A novel approach to the determination of clinical decision thresholds

Mark H. Ebell, Isabella Locatelli, Nicolas Senn

Research output: Contribution to journalArticlepeer-review

22 Scopus citations


Our objective was to determine the test and treatment thresholds for common acute primary care conditions. We presented 200 clinicians with a series of web-based clinical vignettes, describing patients with possible influenza, acute coronary syndrome (ACS), pneumonia, deep vein thrombosis (DVT) and urinary tract infection (UTI). We randomly varied the probability of disease and asked whether the clinician wanted to rule out disease, order tests or rule in disease. By randomly varying the probability, we obtained clinical decisions across a broad range of disease probabilities that we used to create threshold curves. For influenza, the test (4.5% vs 32%, p<0.001) and treatment (55% vs 68%, p=0.11) thresholds were lower for US compared with Swiss physicians. US physicians had somewhat higher test (3.8% vs 0.7%, p=0.107) and treatment (76% vs 58%, p=0.005) thresholds for ACS than Swiss physicians. For both groups, the range between test and treatment thresholds was greater for ACS than for influenza (which is sensible, given the consequences of incorrect diagnosis). For pneumonia, US physicians had a trend towards higher test thresholds and lower treatment thresholds (48% vs 64%, p=0.076) than Swiss physicians. The DVT and UTI scenarios did not provide easily interpretable data, perhaps due to poor wording of the vignettes. We have developed a novel approach for determining decision thresholds. We found important differences in thresholds for US and Swiss physicians that may be a function of differences in healthcare systems. Our results can also guide development of clinical decision rules and guidelines.

Original languageEnglish (US)
Pages (from-to)41-47
Number of pages7
JournalEvidence-Based Medicine
Issue number2
StatePublished - Apr 1 2015

ASJC Scopus subject areas

  • Medicine(all)


Dive into the research topics of 'A novel approach to the determination of clinical decision thresholds'. Together they form a unique fingerprint.

Cite this