TY - JOUR
T1 - Acetoacetate and β-hydroxybutyrate differentially regulate endothelin-1 and vascular endothelial growth factor in mouse brain microvascular endothelial cells
AU - Isales, Carlos M.
AU - Min, Leilin
AU - Hoffman, William H.
PY - 1999/3/1
Y1 - 1999/3/1
N2 - Insulin-dependent diabetes mellitus (IDDM), is characterized by a lack of insulin production from β cells in the pancreas. One of the metabolic consequences of this insulin deficit is an increased hepatic synthesis of ketone bodies, resulting in a serious medical complication, diabetic ketoacidosis (DKA). DKA, in turn, has been associated with the development of cerebral edema. The severity of this complication ranges from death to a subclinical presentation, but seems to be invariably present to some degree. The etiology of the cerebral edema is unknown, but changes in osmolality, pH, and insulin effects on the blood-brain barrier have all been suggested as possible culprits. Blood-brain barrier impermeability is maintained by the endothelial cells (EC) lining the blood vessels. Thus, it would seem likely that alterations in EC function would be necessary for the development of cerebral edema. However, no studies have examined the effects of ketone bodies on brain endothelial cells. The two major ketone bodies in DKA are acetoacetate (AcAc) and β-hydroxybutyrate (BOHB). In the present study we examined the effect of these ketone bodies on a major intracellular signalling pathway. The changes in intracellular calcium concentration, and the production of two vasoactive peptides, endothelin-1 (ET-1) and vascular permeability factor (VPF/VEGF) in mouse brain microvascular endothelial cells (MBMEC). The present studies demonstrate the BOHB can increase vascular permeability factor. In contrast, AcAc increases the production of the potent vasoconstrictor, endothelin-1. This data would suggest that brain ECs are potential targets of the metabolic alterations in DKA. Copyright (C) 1999 Elsevier Science Inc.
AB - Insulin-dependent diabetes mellitus (IDDM), is characterized by a lack of insulin production from β cells in the pancreas. One of the metabolic consequences of this insulin deficit is an increased hepatic synthesis of ketone bodies, resulting in a serious medical complication, diabetic ketoacidosis (DKA). DKA, in turn, has been associated with the development of cerebral edema. The severity of this complication ranges from death to a subclinical presentation, but seems to be invariably present to some degree. The etiology of the cerebral edema is unknown, but changes in osmolality, pH, and insulin effects on the blood-brain barrier have all been suggested as possible culprits. Blood-brain barrier impermeability is maintained by the endothelial cells (EC) lining the blood vessels. Thus, it would seem likely that alterations in EC function would be necessary for the development of cerebral edema. However, no studies have examined the effects of ketone bodies on brain endothelial cells. The two major ketone bodies in DKA are acetoacetate (AcAc) and β-hydroxybutyrate (BOHB). In the present study we examined the effect of these ketone bodies on a major intracellular signalling pathway. The changes in intracellular calcium concentration, and the production of two vasoactive peptides, endothelin-1 (ET-1) and vascular permeability factor (VPF/VEGF) in mouse brain microvascular endothelial cells (MBMEC). The present studies demonstrate the BOHB can increase vascular permeability factor. In contrast, AcAc increases the production of the potent vasoconstrictor, endothelin-1. This data would suggest that brain ECs are potential targets of the metabolic alterations in DKA. Copyright (C) 1999 Elsevier Science Inc.
UR - http://www.scopus.com/inward/record.url?scp=0033035716&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033035716&partnerID=8YFLogxK
U2 - 10.1016/S1056-8727(99)00030-6
DO - 10.1016/S1056-8727(99)00030-6
M3 - Article
C2 - 10432173
AN - SCOPUS:0033035716
SN - 1056-8727
VL - 13
SP - 91
EP - 97
JO - Journal of Diabetes and its Complications
JF - Journal of Diabetes and its Complications
IS - 2
ER -