TY - JOUR
T1 - Activity-dependent NFATc3 nuclear accumulation in pericytes from cortical parenchymal microvessels
AU - Filosa, Jessica A.
AU - Nelson, Mark T.
AU - Gonzalez Bosc, Laura V.
PY - 2007/12
Y1 - 2007/12
N2 - The calcium-dependent transcription factor NFATc3, which is a member of the nuclear factor of activated T cells (NFAT) family of transcription factors, is critical for embryonic vascular development and differentiation. Despite its potential importance, nothing is known about NFATc3 regulation in the brain microcirculation. In the present study, we sought to investigate the role that glutamate, possibly through astrocytic communication, plays in the control of NFATc3 regulation in pericytes from parenchymal microvessels. Coronal cortical slices from neonatal rats were subjected to electrical field stimulation or were treated with the metabotropic glutamate receptor agonist (±)-1- aminocyclopentane-trans-1,3-dicarboxylic acid (t-ACPD). NFATc3, glial fibrillary acidic protein (an astrocyte-specific marker), and platelet-derived growth factor-β-receptor (a pericyte-specific marker) were detected by immunofluorescence. Electrical field stimulation induced NFATc3 nuclear accumulation in pericytes. This response was dependent on neuronal activity and group I metabotropic glutamate receptor (mGluR) activation. In addition, t-ACPD significantly increased NFATc3 nuclear accumulation in both astrocytes and pericytes. NFATc3 nuclear accumulation in pericytes was prevented when astrocytic function was abolished with the gliotoxin L-α-aminoadipate or by the inhibition of calcineurin, cyclooxygenase, and nitric oxide synthase. This is the first study to report NFATc3 expression in pericytes from parenchymal microvessels and in astrocytes from native tissue. Our results suggest a model by which glutamate, via mGluR activation, may regulate gene transcription in pluripotent vascular pericytes.
AB - The calcium-dependent transcription factor NFATc3, which is a member of the nuclear factor of activated T cells (NFAT) family of transcription factors, is critical for embryonic vascular development and differentiation. Despite its potential importance, nothing is known about NFATc3 regulation in the brain microcirculation. In the present study, we sought to investigate the role that glutamate, possibly through astrocytic communication, plays in the control of NFATc3 regulation in pericytes from parenchymal microvessels. Coronal cortical slices from neonatal rats were subjected to electrical field stimulation or were treated with the metabotropic glutamate receptor agonist (±)-1- aminocyclopentane-trans-1,3-dicarboxylic acid (t-ACPD). NFATc3, glial fibrillary acidic protein (an astrocyte-specific marker), and platelet-derived growth factor-β-receptor (a pericyte-specific marker) were detected by immunofluorescence. Electrical field stimulation induced NFATc3 nuclear accumulation in pericytes. This response was dependent on neuronal activity and group I metabotropic glutamate receptor (mGluR) activation. In addition, t-ACPD significantly increased NFATc3 nuclear accumulation in both astrocytes and pericytes. NFATc3 nuclear accumulation in pericytes was prevented when astrocytic function was abolished with the gliotoxin L-α-aminoadipate or by the inhibition of calcineurin, cyclooxygenase, and nitric oxide synthase. This is the first study to report NFATc3 expression in pericytes from parenchymal microvessels and in astrocytes from native tissue. Our results suggest a model by which glutamate, via mGluR activation, may regulate gene transcription in pluripotent vascular pericytes.
KW - Astrocytes
KW - Brain cortex
KW - Calcium
KW - Neuronal activity
KW - Rat
UR - http://www.scopus.com/inward/record.url?scp=37149018417&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=37149018417&partnerID=8YFLogxK
U2 - 10.1152/ajpcell.00554.2006
DO - 10.1152/ajpcell.00554.2006
M3 - Article
C2 - 17881610
AN - SCOPUS:37149018417
SN - 0363-6143
VL - 293
SP - C1797-C1805
JO - American Journal of Physiology - Cell Physiology
JF - American Journal of Physiology - Cell Physiology
IS - 6
ER -