Abstract
The lymphoma plasma membrane glycoprotein, GP85, is a transmembrane glycoprotein that binds directly to ankyrin, a molecule known to link the plasma membrane with the underlying cytoskeleton. In this study, we have demonstrated that palmitic acid is incorporated into GP85 in vivo and that the amount of palmitic acid incorporated is greatly stimulated during lymphoma cap formation. The majority of the incorporated palmitic acid appears to be strongly linked to GP85 since it is not dissociated by strong detergents (e.g. sodium dodecyl sulfate) or by chloroform/methanol extraction, but is labile to alkaline or acid hydrolysis. Furthermore, we have established that deacylation of GP85 (i.e. removal of the palmitic acid moiety from GP85 by 1 M hydroxylamine treatment) significantly reduces the binding affinity between GP85 and ankyrin, and reacylation of GP85 restores the binding affinity. These findings suggest that fatty acid acylation of GP85 by palmitic acid may be required for the stable attachment of the cytoskeleton to the lymphoma plasma membrane.
Original language | English (US) |
---|---|
Pages (from-to) | 11761-11765 |
Number of pages | 5 |
Journal | Journal of Biological Chemistry |
Volume | 266 |
Issue number | 18 |
State | Published - 1991 |
Externally published | Yes |
ASJC Scopus subject areas
- Biochemistry
- Molecular Biology
- Cell Biology