An N-terminal arginine-rich cluster and a proline-alanine-threonine repeat region determine the cellular localization of the herpes simplex virus type 1 ICP34.5 protein and its ligand, protein phosphatase 1

Research output: Contribution to journalArticlepeer-review

25 Scopus citations

Abstract

The ICP34.5 protein facilitates herpes simplex virus replication by binding and activating protein phosphatase 1 (PP1) by means of a very conserved C-terminal GADD34-like region. Natural variants of the ICP34.5 differing in the number of arginines in an Arg-rich cluster at the N terminus and the number of Pro-Ala-Thr repeats in the central bridge region of the protein were cloned as fusion proteins with a reporter peptide (c-Myc or hrGFP) at the C terminus. The natural variants were obtained from strains differing in passage history, tissue culture behavior, and neuroinvasive disease potential. In transfected cells, these variants localized to different subcellular compartments. The N-terminal Arg-rich cluster acted as a cellular localization signal for discrete regions of the nucleus and cytoplasm, but the ultimate location of ICP34.5 was determined by the number of Pro-Ala-Thr repeats in the central bridge region. PP1 colocalized with the ICP34.5 variant in cells expressing the ICP34.5. The ICP34.5-mediated, herpes simplex virus strain-dependent differences in the modulation of PP1 location and function may be responsible for the strain-associated differences in tissue culture behavior and virulence of the virus.

Original languageEnglish (US)
Pages (from-to)11423-11431
Number of pages9
JournalJournal of Biological Chemistry
Volume277
Issue number13
DOIs
StatePublished - Mar 29 2002
Externally publishedYes

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'An N-terminal arginine-rich cluster and a proline-alanine-threonine repeat region determine the cellular localization of the herpes simplex virus type 1 ICP34.5 protein and its ligand, protein phosphatase 1'. Together they form a unique fingerprint.

Cite this