Antibody-independent phagocytosis of tumor cells by human monocyte-derived macrophages cultured in recombinant macrophage colony-stimulating factor

David H. Munn, Nai Kong V. Cheung

Research output: Contribution to journalArticlepeer-review

25 Scopus citations

Abstract

Human monocytes exposed in vitro to recombinant macrophage-colony-stimulating factor (rhMCSF) differentiate into monocyte-derived macrophages (MDM), which mediate efficient antibodydependent cytotoxicity (ADCC) against tumor cells. We and others have shown that this form of ADCC is unusual in that phagocytosis, rather than extracellular lysis, appears to play the major role in target cell killing. In this study, we asked whether the phagocytic form of cytotoxicity seen with ADCC could occur in the absence of an opsonizing antibody. We now report that, whereas cell lines derived from solid tumors are often resistant to antibody-independent cytotoxicity, malignant cells of lymphoid origin appear particularly susceptible to such antibody-independent killing. We found that all of nine lymphocytic leukemia and lymphoma cell lines tested in a total of 35 experiments, plus all four samples of fresh leukemic blasts, were consistently susceptible to antibody-independent MDM cytotoxicity. Antibody-independent cytotoxicity against these cells was efficient (40%-63% killing) at effector: target (E:T) ratios as low as 2:1. Like ADCC, antibody-independent cytotoxicity involved phagocytosis of target cells, as demonstrated by ingestion of fluorescently labeled targets and analysis by flow cytometry. At the time of phagocytosis, the majority of target cells retained membrane integrity, as indicated by the direct transfer of intracellular [51Cr]chromate from radiolabeled targets to phagocytosing MDM, without release of the label into the medium. However, in contrast to ADCC, we found that the degree of antibody-independent cytotoxicity was not a function of the E:T ratio. Instead, a constant proportion of the available target cells were killed regardless of the E:T ratio, suggesting that target cell recognition, rather than effector cell potency, might be the limiting factor in determining cytotoxicity. In additional experiments, we have also identified a second tumor cell type, nueroblastoma, as being susceptible to antibody-independent phagocytosis (all of five cell lines tested, cytotoxicity 40%-93%, E:T=3:1). Our data thus indicate that the cytotoxicity induced by rhMCSF is not confined to antibody-mediated killing, and that phagocytosis can play a significant role in target cell destruction even in the absence of opsonizing antibody.

Original languageEnglish (US)
Pages (from-to)46-52
Number of pages7
JournalCancer Immunology Immunotherapy
Volume41
Issue number1
DOIs
StatePublished - Jan 1995

Keywords

  • Cytotoxicity
  • Macrophage
  • Macrophage-colony-stimulating factor
  • Phagocytosis Tumor cells

ASJC Scopus subject areas

  • Immunology and Allergy
  • Immunology
  • Oncology
  • Cancer Research

Fingerprint

Dive into the research topics of 'Antibody-independent phagocytosis of tumor cells by human monocyte-derived macrophages cultured in recombinant macrophage colony-stimulating factor'. Together they form a unique fingerprint.

Cite this