Antiurolithic effect of lupeol and lupeol linoleate in experimental hyperoxaluria

Varatharajan Sudhahar, Coothan Kandaswamy Veena, Palaninathan Varalakshmi

Research output: Contribution to journalArticlepeer-review

28 Scopus citations


The present study was undertaken to explore the efficiency of the pentacyclic triterpene lupeol (1) and its ester derivative, lupeol linoleate (2), in experimental hyperoxaluria. Hyperoxaluria was induced in male Wistar rats with 0.75% ethylene glycol (EG) in drinking water for 28 days. Hyperoxaluric animals were supplemented orally with 1 and 2 (50 mg/kg body wt/day) throughout the experimental period of 28 days. The renal enzymes were assayed as markers of renal tissue integrity. The redox status and oxalate metabolism in animals under oxalate overloading was also assessed. Microscopic analysis was done to investigate the abnormalities associated with oxalate exposure in renal tissues. Increase in oxidative milieu in hyperoxaluria was evident by increased lipid peroxidation (LPO) and decreased enzymic and nonenzymic antioxidants. Decrease in the activities of renal enzymes exemplified the damage induced by oxalate, which correlated positively with increased LPO and increased oxalate synthesis. Renal microscopic analysis further emphasized the oxalate-induced damage. These abnormal biochemical and histological aberrations were attenuated with test compound treatment, with 2 more effective than 1. From the present study, it can be concluded that 1 and 2 may serve as candidates for alleviating oxalate toxicity.

Original languageEnglish (US)
Pages (from-to)1509-1512
Number of pages4
JournalJournal of Natural Products
Issue number9
StatePublished - Sep 1 2008
Externally publishedYes

ASJC Scopus subject areas

  • Analytical Chemistry
  • Molecular Medicine
  • Pharmacology
  • Pharmaceutical Science
  • Drug Discovery
  • Complementary and alternative medicine
  • Organic Chemistry


Dive into the research topics of 'Antiurolithic effect of lupeol and lupeol linoleate in experimental hyperoxaluria'. Together they form a unique fingerprint.

Cite this