Biomechanical characteristics of regenerated cortical bone in the canine mandible

Uriel Zapata, Lynne A. Opperman, Elias Kontogiorgos, Mohammed E. Elsalanty, Paul C. Dechow

Research output: Contribution to journalArticlepeer-review

6 Scopus citations


To test the mechanical properties of regenerate cortical bone created using mandibular bone transport (MBT) distraction, five adult male American foxhound dogs underwent unilateral distraction of the mandible with a novel MBT device placed to linearly repair a 30-35 mm bone defect. The animals were sacrificed 12 weeks after the beginning of the consolidation period. Fourteen cylindrical specimens were taken from the inner (lingual) and outer (buccal) plates of the reconstructed mandible and 21 control specimens were removed from the contralateral aspect of the mandible. The mechanical properties of the 35 cylindrical cortical bone specimens were assessed by using a non-destructive pulse ultrasound technique. Results showed that all of the cortical mechanical properties exhibit higher numerical values on the control side than the MBT regenerate side. In addition, both densities and the elastic moduli in the direction of maximum stiffness of the regenerate cortical bone specimens are higher on the lingual side than the buccal side. Interestingly, there is no statistical difference between elastic modulus (E1 and E2) in orthogonal directions throughout the 35 cortical specimens. The data suggest that not only is the regenerate canine cortical bone heterogeneous, but the elastic mechanical properties tend to approximate transverse isotropy at a tissue level, as opposed to control cortical bone, which is orthotropic. In addition, the elastic mechanical properties are higher not only on the control side but also in the lingual anatomical position, suggesting a stress shielding effect from the presence of the reconstruction plate.

Original languageEnglish (US)
Pages (from-to)551-559
Number of pages9
JournalJournal of Tissue Engineering and Regenerative Medicine
Issue number7
StatePublished - Jul 2011
Externally publishedYes


  • Animal model
  • Bone healing
  • Bone transport
  • Bony tissue
  • Distraction device
  • Jaw mechanics
  • Ultrasound technique

ASJC Scopus subject areas

  • Medicine (miscellaneous)
  • Biomaterials
  • Biomedical Engineering


Dive into the research topics of 'Biomechanical characteristics of regenerated cortical bone in the canine mandible'. Together they form a unique fingerprint.

Cite this