TY - JOUR
T1 - Compromised energetics in the adenylate kinase AK1 gene knockout heart under metabolic stress
AU - Pucar, Darko
AU - Janssen, Edwin
AU - Dzeja, Petras P.
AU - Juranic, Nenad
AU - Macura, Slobodan
AU - Wieringa, Bé
AU - Terzic, Andre
PY - 2000/12/29
Y1 - 2000/12/29
N2 - Rapid exchange of high energy carrying molecules between intracellular compartments is essential in sustaining cellular energetic homeostasis. Adenylate kinase (AK)-catalyzed transfer of adenine nucleotide β- and γ-phosphoryls has been implicated in intracellular energy communication and nucleotide metabolism. To demonstrate the significance of this reaction in cardiac energetics, phosphotransfer dynamics were determined by [18O]phosphoryl oxygen analysis using 31P NMR and mass spectrometry. In hearts with a null mutation of the AK1 gene, which encodes the major AK isoform, total AK activity and β-phosphoryl transfer was reduced by 94% and 36%, respectively. This was associated with up-regulation of phosphoryl flux through remaining minor AK isoforms and the glycolytic phosphotransfer enzyme, 3-phosphoglycerate kinase. In the absence of metabolic stress, deletion of AK1 did not translate into gross abnormalities in nucleotide levels, γ-ATP turnover rate or creatine kinase-catalyzed phosphotransfer. However, under hypoxia AK1-deficient hearts, compared with the wild type, had a blunted AK-catalyzed phosphotransfer response, lowered intracellular ATP levels, increased Pi/ATP ratio, and suppressed generation of adenosine. Thus, although lack of AK1 phosphotransfer can be compensated in the absence of metabolic challenge, under hypoxia AK1-knockout hearts display compromised energetics and impaired cardioprotective signaling. This study, therefore, provides first direct evidence that AK1 is essential in maintaining myocardial energetic homeostasis, in particular under metabolic stress.
AB - Rapid exchange of high energy carrying molecules between intracellular compartments is essential in sustaining cellular energetic homeostasis. Adenylate kinase (AK)-catalyzed transfer of adenine nucleotide β- and γ-phosphoryls has been implicated in intracellular energy communication and nucleotide metabolism. To demonstrate the significance of this reaction in cardiac energetics, phosphotransfer dynamics were determined by [18O]phosphoryl oxygen analysis using 31P NMR and mass spectrometry. In hearts with a null mutation of the AK1 gene, which encodes the major AK isoform, total AK activity and β-phosphoryl transfer was reduced by 94% and 36%, respectively. This was associated with up-regulation of phosphoryl flux through remaining minor AK isoforms and the glycolytic phosphotransfer enzyme, 3-phosphoglycerate kinase. In the absence of metabolic stress, deletion of AK1 did not translate into gross abnormalities in nucleotide levels, γ-ATP turnover rate or creatine kinase-catalyzed phosphotransfer. However, under hypoxia AK1-deficient hearts, compared with the wild type, had a blunted AK-catalyzed phosphotransfer response, lowered intracellular ATP levels, increased Pi/ATP ratio, and suppressed generation of adenosine. Thus, although lack of AK1 phosphotransfer can be compensated in the absence of metabolic challenge, under hypoxia AK1-knockout hearts display compromised energetics and impaired cardioprotective signaling. This study, therefore, provides first direct evidence that AK1 is essential in maintaining myocardial energetic homeostasis, in particular under metabolic stress.
UR - http://www.scopus.com/inward/record.url?scp=0034731467&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034731467&partnerID=8YFLogxK
U2 - 10.1074/jbc.M007903200
DO - 10.1074/jbc.M007903200
M3 - Article
C2 - 11006295
AN - SCOPUS:0034731467
SN - 0021-9258
VL - 275
SP - 41424
EP - 41429
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 52
ER -