Computational methods for detection of differentially methylated regions using kernel distance and scan statistics

Faith Dunbar, Hongyan Xu, Duchwan Ryu, Santu Ghosh, Huidong Shi, Varghese George

Research output: Contribution to journalArticlepeer-review

2 Scopus citations


Motivation: Researchers in genomics are increasingly interested in epigenetic factors such as DNA methylation because they play an important role in regulating gene expression without changes in the sequence of DNA. Abnormal DNA methylation is associated with many human diseases. Results: We propose two different approaches to test for differentially methylated regions (DMRs) associated with complex traits, while accounting for correlations among CpG sites in the DMRs. The first approach is a nonparametric method using a kernel distance statistic and the second one is a likelihood-based method using a binomial spatial scan statistic. The kernel distance method uses the kernel function, while the binomial scan statistic approach uses a mixed-effects model to incorporate correlations among CpG sites. Extensive simulations show that both approaches have excellent control of type I error, and both have reasonable statistical power. The binomial scan statistic approach appears to have higher power, while the kernel distance method is computationally faster. The proposed methods are demonstrated using data from a chronic lymphocytic leukemia (CLL) study.

Original languageEnglish (US)
Article number298
Issue number4
StatePublished - Apr 2019


  • Binomial scan statistic
  • CpG sites
  • DNA methylation
  • Kernel distance statistic
  • Mixed-effects model

ASJC Scopus subject areas

  • Genetics
  • Genetics(clinical)


Dive into the research topics of 'Computational methods for detection of differentially methylated regions using kernel distance and scan statistics'. Together they form a unique fingerprint.

Cite this