TY - JOUR
T1 - Cytotoxic Autophagy
T2 - A Novel Treatment Paradigm against Breast Cancer Using Oleanolic Acid and Ursolic Acid
AU - Gupta, Kunj Bihari
AU - Gao, Jie
AU - Li, Xin
AU - Thangaraju, Muthusamy
AU - Panda, Siva S.
AU - Lokeshwar, Bal L.
N1 - Publisher Copyright:
© 2024 by the authors.
PY - 2024/10
Y1 - 2024/10
N2 - Background: Oleanolic acid (OA) and Ursolic acid (UA) are bioactive triterpenoids. Reported activities vary with the dose used for testing their activities in vitro. Studies using doses of ≥20 µM showed apoptosis activities in cancer cells. However, reported drug levels in circulation achieved by oral administration of UA and OA are ≤2 µM, thus limiting their use for treatment or delivering a combination treatment. Materials and Methods: The present report demonstrates the efficacy of OA, UA, and OA + UA on tumor cell-specific cytotoxicity at low doses (5 µM to 10 µM) in breast cancer (BrCa) cell lines MCF7 and MDA-MB231. Results: The data show that both OA and UA killed BrCa cells at low doses, but were significantly less toxic to MCF-12A, a non-tumorigenic cell line. Moreover, OA + UA at ≤10 µM was lethal to BrCa cells. Mechanistic studies unraveled the significant absence of apoptosis, but their cytotoxicity was due to the induction of excessive autophagy at a OA + UA dose of 5 µM each. A link to drug-induced cytotoxic autophagy was established by demonstrating a lack of their cytotoxicity by silencing the autophagy-targeting genes (ATGs), which prevented OA-, UA-, or OA + UA-induced cell death. Further, UA or OA + UA treatment of BrCa cells caused an inhibition of PI3 kinase-mediated phosphorylation of Akt/mTOR, the key pathways that regulate cancer cell survival, metabolism, and proliferation. Discussion: Combinations of a PI3K inhibitor (LY294002) with OA, UA, or OA + UA synergistically inhibited BrCa cell survival. Therefore, the dominance of cytotoxic autophagy by inhibiting PI3K-mediated autophagy may be the primary mechanism of PTT-induced anticancer activity in BrCa cells. Conclusion: These results suggest it would be worthwhile testing combined OA and UA in clinical settings.
AB - Background: Oleanolic acid (OA) and Ursolic acid (UA) are bioactive triterpenoids. Reported activities vary with the dose used for testing their activities in vitro. Studies using doses of ≥20 µM showed apoptosis activities in cancer cells. However, reported drug levels in circulation achieved by oral administration of UA and OA are ≤2 µM, thus limiting their use for treatment or delivering a combination treatment. Materials and Methods: The present report demonstrates the efficacy of OA, UA, and OA + UA on tumor cell-specific cytotoxicity at low doses (5 µM to 10 µM) in breast cancer (BrCa) cell lines MCF7 and MDA-MB231. Results: The data show that both OA and UA killed BrCa cells at low doses, but were significantly less toxic to MCF-12A, a non-tumorigenic cell line. Moreover, OA + UA at ≤10 µM was lethal to BrCa cells. Mechanistic studies unraveled the significant absence of apoptosis, but their cytotoxicity was due to the induction of excessive autophagy at a OA + UA dose of 5 µM each. A link to drug-induced cytotoxic autophagy was established by demonstrating a lack of their cytotoxicity by silencing the autophagy-targeting genes (ATGs), which prevented OA-, UA-, or OA + UA-induced cell death. Further, UA or OA + UA treatment of BrCa cells caused an inhibition of PI3 kinase-mediated phosphorylation of Akt/mTOR, the key pathways that regulate cancer cell survival, metabolism, and proliferation. Discussion: Combinations of a PI3K inhibitor (LY294002) with OA, UA, or OA + UA synergistically inhibited BrCa cell survival. Therefore, the dominance of cytotoxic autophagy by inhibiting PI3K-mediated autophagy may be the primary mechanism of PTT-induced anticancer activity in BrCa cells. Conclusion: These results suggest it would be worthwhile testing combined OA and UA in clinical settings.
KW - bioactive triterpenoids
KW - combination therapy
KW - mitophagy
KW - PI3 kinase inhibition
KW - triple-negative breast cancer
UR - http://www.scopus.com/inward/record.url?scp=85206576733&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85206576733&partnerID=8YFLogxK
U2 - 10.3390/cancers16193367
DO - 10.3390/cancers16193367
M3 - Article
AN - SCOPUS:85206576733
SN - 2072-6694
VL - 16
JO - Cancers
JF - Cancers
IS - 19
M1 - 3367
ER -