Detecting periodic patterns in unevenly spaced gene expression time series using Lomb-Scargle periodograms

Earl F. Glynn, Jie Chen, Arcady R. Mushegian

Research output: Contribution to journalArticlepeer-review

176 Scopus citations


Motivation: Periodic patterns in time series resulting from biological experiments are of great interest. The commonly used Fast Fourier Transform (FFT) algorithm is applicable only when data are evenly spaced and when no values are missing, which is not always the case in high-throughput measurements. The choice of statistic to evaluate the significance of the periodic patterns for unevenly spaced gene expression time series has not been well substantiated. Methods: The Lo mb-Scargle periodogram approach is used to search time series of gene expression to quantify the periodic behavior of every gene represented on the DNA array. The Lomb-Scargle periodogram analysis provides a direct method to treat missing values and unevenly spaced time points. We propose the combination of a Lomb-Scargle test statistic for periodicity and a multiple hypothesis testing procedure with controlled false discovery rate to detect significant periodic gene expression patterns. Results: We analyzed the Plasmodium falciparumgene expression dataset. In the Quality Control Dataset of 5080 expression patterns, we found 4112 periodic probes. In addition, we identified 243 probes with periodic expression in the Complete Dataset, which could not be examined in the original study by the FFT analysis due to an excessive number of missing values. While most periodic genes had a period of 48 h, some had a period close to 24 h. Our approach should be applicable for detection and quantification of periodic patterns in any unevenly spaced gene expression time-series data.

Original languageEnglish (US)
Pages (from-to)310-316
Number of pages7
Issue number3
StatePublished - Feb 1 2006
Externally publishedYes

ASJC Scopus subject areas

  • Statistics and Probability
  • Biochemistry
  • Molecular Biology
  • Computer Science Applications
  • Computational Theory and Mathematics
  • Computational Mathematics


Dive into the research topics of 'Detecting periodic patterns in unevenly spaced gene expression time series using Lomb-Scargle periodograms'. Together they form a unique fingerprint.

Cite this