Differential consolidation and pattern reverberations within episodic cell assemblies in the mouse hippocampus

Remus Oşan, Guifen Chen, Ruiben Feng, Joe Z. Tsien

Research output: Contribution to journalArticlepeer-review

15 Scopus citations


One hallmark feature of consolidation of episodic memory is that only a fraction of original information, which is usually in a more abstract form, is selected for long-term memory storage. How does the brain perform these differential memory consolidations? To investigate the neural network mechanism that governs this selective consolidation process, we use a set of distinct fearful events to study if and how hippocampal CA1 cells engage in selective memory encoding and consolidation. We show that these distinct episodes activate a unique assembly of CA1 episodic cells, or neural cliques, whose response-selectivity ranges from general-to-specific features. A series of parametric analyses further reveal that post-learning CA1 episodic pattern replays or reverberations are mostly mediated by cells exhibiting event intensity-invariant responses, not by the intensity-sensitive cells. More importantly, reactivation cross-correlations displayed by intensity-invariant cells encoding general episodic features during immediate post-learning period tend to be stronger than those displayed by invariant cells encoding specific features. These differential reactivations within the CA1 episodic cell populations can thus provide the hippocampus with a selection mechanism to consolidate preferentially more generalized knowledge for long-term memory storage.

Original languageEnglish (US)
Article numbere16507
JournalPloS one
Issue number2
StatePublished - 2011
Externally publishedYes

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General


Dive into the research topics of 'Differential consolidation and pattern reverberations within episodic cell assemblies in the mouse hippocampus'. Together they form a unique fingerprint.

Cite this