Double RNA interference of DNMT3b and DNMT1 enhances DNA demethylation and gene reactivation

Yu Wei Leu, Farahnaz Rahmatpanah, Huidong Shi, Susan H. Wei, Joseph C. Liu, Pearlly S. Yan, Tim Hui Ming Huang

Research output: Contribution to journalArticlepeer-review

132 Scopus citations


Small interfering RNAs (siRNAs) are newly identified molecules shown to silence genes via targeted mRNA degradation. In this study, we used specific siRNAs as a tool to probe the relationship between two DNA methyltransferase genes, DNMT3b and DNMT1, in the maintenance of DNA methylation patterns in the genome. Levels of DNMT3b or DNMT1 mRNAs and proteins were markedly decreased (up to 80%) on transfecting these siRNAs into the ovarian cancer cell line CP70. The resulting RNA interference showed differential effects on DNA demethylation and gene reactivation in the treated cells. The DNMT1 siRNA treatment led to a partial removal of DNA methylation from three inactive promoter CpG islands, TWIST, RASSF1A, and HIN-1, and restored the expression of these genes. This epigenetic alteration appeared less effective in cells transfected with DNMT3b siRNA. However, the combined treatment of DNMT3b and DNMT1 siRNAs greatly enhanced this demethylation effect, producing 7-15-fold increases in their expression. We also used a microarray approach to examine this RNA interference on 8640 CpG island loci in CP70 cells. The combined siRNA treatment had a greater demethylation effect on 241 methylated loci and selected repetitive sequences than that of the single treatment. Our data thus suggest that whereas DNMT1 plays a key role in methylation maintenance, DNMT3b may act as an accessory to support the function in CP70 cells. This study also shows that siRNA is a powerful tool for interrogating the mechanisms of DNA methylation in normal and pathological genomes.

Original languageEnglish (US)
Pages (from-to)6110-6115
Number of pages6
JournalCancer Research
Issue number19
StatePublished - Oct 1 2003

ASJC Scopus subject areas

  • Oncology
  • Cancer Research


Dive into the research topics of 'Double RNA interference of DNMT3b and DNMT1 enhances DNA demethylation and gene reactivation'. Together they form a unique fingerprint.

Cite this