Efficiently correcting matrix products

Leszek Gąsieniec, Christos Levcopoulos, Andrzej Lingas

Research output: Chapter in Book/Report/Conference proceedingChapter

2 Scopus citations


We study the problem of efficiently correcting an erroneous product of two n×n matrices over a ring. We provide a randomized algorithm for correcting a matrix product with k erroneous entries running in Õ (√ kn2) time and a deterministic Õ(kn2)-time algorithm for this problem (where the notation Õ suppresses polylogarithmic terms in n and k).

Original languageEnglish (US)
Title of host publicationAlgorithms and Computation - 25th International Symposium, ISAAC 2014, Proceedings
EditorsHee-Kap Ahn, Chan-Su Shin
PublisherSpringer Verlag
Number of pages12
ISBN (Electronic)9783319130743
StatePublished - 2014
Externally publishedYes

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349


  • Correction algorithms
  • Matrix multiplication
  • Matrix product verification
  • Randomized algorithms

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science


Dive into the research topics of 'Efficiently correcting matrix products'. Together they form a unique fingerprint.

Cite this