Electrophysiological effects of risperidone in mammalian cardiac cells

János Magyar, Tamás Bányász, Zsolt Bagi, Pál Pacher, Norbert Szentandrássy, László Fülöp, Valéria Kecskeméti, Péter P. Nánási

Research output: Contribution to journalArticlepeer-review

24 Scopus citations

Abstract

In this study, the effects of risperidone, the widely used antipsychotic drug, on isolated canine ventricular myocytes and guinea-pig papillary muscles were analyzed using conventional microelectrode and whole cell voltage-clamp techniques. Risperidone concentration-dependently lengthened action potential duration in guinea-pig papillary muscles (EC50=0.29±0.02 μM) and single canine ventricular myocytes (EC50=0.48±0.14 μM). This effect was reversible, showed reverse rate dependence, and it was most prominent on the terminal portion of repolarization. No significant effect of risperidone on the resting membrane potential, action potential amplitude or maximum rate of depolarization was observed. In voltage-clamped canine ventricular myocytes risperidone caused concentration-dependent block of the rapid component of the delayed rectifier K+ current (IKr), measured as outward current tails at -40 mV, with an IC50 of 0.92±0.26 μM. Suppression of IKr was not associated with changes in activation or deactivation kinetics. High concentration of risperidone (10 μM) suppressed also the slow component of the delayed rectifier K+ current (IKs) by 9.6±1.5% at +50 mV. These effects of risperidone developed rapidly and were readily reversible. Risperidone had no significant effect on the amplitude of other K+ currents (IK1 and Ito). The inhibition of cardiac IKr current by risperidone may explain the cardiac side-effects observed occasionally with the drug. Our results suggest that risperidone displays class III antiarrhythmic properties, and as such, may produce QTc prolongation, especially in patients with long QT syndrome. Therefore, in psychotic patients having also cardiac disorders, ECG control may be suggested during risperidone therapy.

Original languageEnglish (US)
Pages (from-to)350-356
Number of pages7
JournalNaunyn-Schmiedeberg's Archives of Pharmacology
Volume366
Issue number4
DOIs
StatePublished - 2002
Externally publishedYes

Keywords

  • Action potential duration
  • Antidepressant drugs
  • Cardiac myocytes
  • Potassium currents
  • Risperidone

ASJC Scopus subject areas

  • Pharmacology

Fingerprint

Dive into the research topics of 'Electrophysiological effects of risperidone in mammalian cardiac cells'. Together they form a unique fingerprint.

Cite this