TY - JOUR
T1 - Elucidation of the Role of Arginine-224 in the Turnover Processes of Class A β-Lactamases
AU - Zafaralla, Glenn
AU - Manavathu, Elias K.
AU - Lerner, Stephen A.
AU - Mobashery, Shahriar
PY - 1992/4/1
Y1 - 1992/4/1
N2 - The highly conserved arginine-244 of β-lactamases has been postulated to play a role in their initial recognition of substrates, presumably through ion pairing interactions [Moews, P. C., Knox, J. R., Dideberg, O., Charlier, P., & Frere, J. M. (1990) Proteins·. Struct., Funct., Genet. 7, 156-171]. However, in the Michaelis enzyme-substrate complex, no direct function has been attributed to this residue. Two mutants with substitutions of this residue in the TEM-1 β-lactamase (lysine-244 and serine-244) have been prepared to explore whether the guanidinium group of arginine-244 plays a critical role in the turnover processes. The mutant enzymes are effective catalysts for the hydrolysis of both penicillins and cephalosporins, and the lysine mutant enzyme behaves virtually identically to the wild-type β-lactamase. Comparative kinetic characterization of the serine mutant and wild-type enzymes attributed apparent binding energies of 1.3-2.3 kcal/mol for the penicillins and 0.3-1.0 kcal/mol for the cephalosporins to the transition-state species by arginine-244. Furthermore, it was shown that arginine-244 also contributes equally well to ground-state binding stabilization. These results were interpreted to indicate the involvement of a long hydrogen bond between arginine-244 and the substrate carboxylate, both in the ground and transition states. A reassessed picture for substrate anchoring involving interactions of the substrate carboxylate with the side chains of Ser-130, Ser-235, and Arg-244 is proposed to accommodate these observations.
AB - The highly conserved arginine-244 of β-lactamases has been postulated to play a role in their initial recognition of substrates, presumably through ion pairing interactions [Moews, P. C., Knox, J. R., Dideberg, O., Charlier, P., & Frere, J. M. (1990) Proteins·. Struct., Funct., Genet. 7, 156-171]. However, in the Michaelis enzyme-substrate complex, no direct function has been attributed to this residue. Two mutants with substitutions of this residue in the TEM-1 β-lactamase (lysine-244 and serine-244) have been prepared to explore whether the guanidinium group of arginine-244 plays a critical role in the turnover processes. The mutant enzymes are effective catalysts for the hydrolysis of both penicillins and cephalosporins, and the lysine mutant enzyme behaves virtually identically to the wild-type β-lactamase. Comparative kinetic characterization of the serine mutant and wild-type enzymes attributed apparent binding energies of 1.3-2.3 kcal/mol for the penicillins and 0.3-1.0 kcal/mol for the cephalosporins to the transition-state species by arginine-244. Furthermore, it was shown that arginine-244 also contributes equally well to ground-state binding stabilization. These results were interpreted to indicate the involvement of a long hydrogen bond between arginine-244 and the substrate carboxylate, both in the ground and transition states. A reassessed picture for substrate anchoring involving interactions of the substrate carboxylate with the side chains of Ser-130, Ser-235, and Arg-244 is proposed to accommodate these observations.
UR - http://www.scopus.com/inward/record.url?scp=0026654218&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0026654218&partnerID=8YFLogxK
U2 - 10.1021/bi00130a016
DO - 10.1021/bi00130a016
M3 - Article
C2 - 1567841
AN - SCOPUS:0026654218
SN - 0006-2960
VL - 31
SP - 3847
EP - 3852
JO - Biochemistry
JF - Biochemistry
IS - 15
ER -