Emerging diversities in the mechanism of action of steroid hormones

Darrell W Brann, Lawrence B. Hendry, Virendra B. Mahesh

Research output: Contribution to journalReview articlepeer-review

69 Scopus citations


The classical genomic action of steroid hormones acting through intracellular receptors is well recognized. Within this concept of action, questions regarding the ultimate fate of the hormone and lack of a tight correlation between tissue uptake and biological activity with receptor binding remain unanswered. Evidence has accumulated that steroid hormones can exert non-classical action that is characterized by rapid effect of short duration. In most of these cases, the hormone effect occurs at the membrane level and is not associated with entry into the cell. The possible mechanisms for these non-classical actions are: (a) changes in membrane fluidity; (b) steroid hormone acting on receptors on plasma membranes; (c) steroid hormones regulating GABAA receptors on plasma membranes; and (d) activation of steroid receptors by factors such as EGF, IGF-1 and dopamine. Data have also been obtained indicating that receptor-mediated insertion of steroid hormones into DNA may take place with the steroid acting as a transcription factor. These new proposed mechanisms of action of steroid hormones should not be viewed as a challenge to the classical mechanism. These diverse modes of action provide for an integrated action of hormones which may be rapid and of short duration or prolonged to address the physiological needs of the individual.

Original languageEnglish (US)
Pages (from-to)113-133
Number of pages21
JournalJournal of Steroid Biochemistry and Molecular Biology
Issue number2
StatePublished - Jan 1 1995

ASJC Scopus subject areas

  • Endocrinology, Diabetes and Metabolism
  • Biochemistry
  • Molecular Medicine
  • Molecular Biology
  • Endocrinology
  • Clinical Biochemistry
  • Cell Biology


Dive into the research topics of 'Emerging diversities in the mechanism of action of steroid hormones'. Together they form a unique fingerprint.

Cite this