TY - JOUR
T1 - ENSO Impact on Winter Precipitation in the Southeast United States through a Synoptic Climate Approach
AU - Qian, Jian Hua
AU - Viner, Brian
AU - Noble, Stephen
AU - Werth, David
AU - Li, Cuihua
N1 - Funding Information:
This work was produced by Battelle Savannah River Alliance, LLC under Contract No. 89303321CEM000080 with the U.S. Department of Energy. Publisher acknowledges the U.S. Government license to provide public access under the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan, accessed on 20 July 2022).
Publisher Copyright:
© 2022 by the authors.
PY - 2022/8
Y1 - 2022/8
N2 - The ENSO impact on winter precipitation in the Southeast United States was analyzed from the perspective of daily weather types (WTs). We calculated the dynamic contribution associated with the change in frequency of the WTs and the thermodynamic contribution due to changes in the spatial patterns of the environmental fields of the WTs. Six WTs were obtained using a k-means clustering analysis of 850 hPa winds in reanalysis data from November to February of 1948–2022. All the WTs can only persist for a few days. The most frequent winter weather type is WT1 (shallow trough in Eastern U.S.), which can persist or likely transfer to WT4 (Mississippi River Valley ridge). WT1 becomes less frequent in El Niño years, while the frequency of WT4 does not change much. WTs 2–6 correspond to a loop of eastward propagating waves with troughs and ridges in the mid-latitude westerlies. Three WTs with a deep trough in the Southeast U.S., which are WT2 (east coast trough), WT3 (off east coast trough) and WT6 (plains trough), become more frequent in El Niño years. The more frequent deep troughs (WTs 2, 3 and 6) and less frequent shallow trough (WT1) result in above-normal precipitation in the coastal Southeast U.S. in the winter of El Niño years. WT5 (off coast Carolina High), with maximum precipitation extending from Mississippi Valley to the Great Lakes, becomes less frequent in El Niño years, which corresponds to the below-normal precipitation from the Great Lakes to Upper Mississippi and Ohio River Valley in El Niño years, and vice versa in La Niña years. The relative contribution of the thermodynamic and dynamic contribution is location dependent. On the east coast, the two contributions are similar in magnitude.
AB - The ENSO impact on winter precipitation in the Southeast United States was analyzed from the perspective of daily weather types (WTs). We calculated the dynamic contribution associated with the change in frequency of the WTs and the thermodynamic contribution due to changes in the spatial patterns of the environmental fields of the WTs. Six WTs were obtained using a k-means clustering analysis of 850 hPa winds in reanalysis data from November to February of 1948–2022. All the WTs can only persist for a few days. The most frequent winter weather type is WT1 (shallow trough in Eastern U.S.), which can persist or likely transfer to WT4 (Mississippi River Valley ridge). WT1 becomes less frequent in El Niño years, while the frequency of WT4 does not change much. WTs 2–6 correspond to a loop of eastward propagating waves with troughs and ridges in the mid-latitude westerlies. Three WTs with a deep trough in the Southeast U.S., which are WT2 (east coast trough), WT3 (off east coast trough) and WT6 (plains trough), become more frequent in El Niño years. The more frequent deep troughs (WTs 2, 3 and 6) and less frequent shallow trough (WT1) result in above-normal precipitation in the coastal Southeast U.S. in the winter of El Niño years. WT5 (off coast Carolina High), with maximum precipitation extending from Mississippi Valley to the Great Lakes, becomes less frequent in El Niño years, which corresponds to the below-normal precipitation from the Great Lakes to Upper Mississippi and Ohio River Valley in El Niño years, and vice versa in La Niña years. The relative contribution of the thermodynamic and dynamic contribution is location dependent. On the east coast, the two contributions are similar in magnitude.
KW - El Niño
KW - winter weather types
UR - http://www.scopus.com/inward/record.url?scp=85137273111&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85137273111&partnerID=8YFLogxK
U2 - 10.3390/atmos13081159
DO - 10.3390/atmos13081159
M3 - Article
AN - SCOPUS:85137273111
SN - 2073-4433
VL - 13
JO - ATMOSPHERE
JF - ATMOSPHERE
IS - 8
M1 - 1159
ER -