TY - JOUR
T1 - Expression of CYP4A1 in U251 human glioma cell induces hyperproliferative phenotype in vitro and rapidly growing tumors in vivo
AU - Guo, Austin M.
AU - Sheng, Ju
AU - Scicli, Gloria M.
AU - Arbab, Ali S.
AU - Lehman, Norman L.
AU - Edwards, Paul A.
AU - Falck, John R.
AU - Roman, Richard J.
AU - Scicli, A. Guillermo
PY - 2008/10
Y1 - 2008/10
N2 - Exogenous 20-hydroxyeicosatetraenoic acid (20-HETE) increases the growth of human glioma cells in vitro. However, glioma cells in culture show negligible 20-HETE synthesis. We examined whether inducing the expression of a 20-HETE synthase in a human glioma U251 cell line would increase proliferation. U251 cells transfected with CYP4A1 cDNA (termed U251 O) increased the formation of 20-HETE from less than 1 to over 60 pmol/min/mg proteins and increased their proliferation rate by 2-fold (p < 0.01). Compared with control U251, U251 O cells were rounded, smaller, showed a disorganized cytoskeleton, exhibited reduced vinculin staining, and were easily detached from the growing surface. They showed a marked increase in dihydroethidium staining, suggesting increased oxidative stress. The expression of phosphorylated extracellular signal-regulated kinase 1/2, cyclin D1/2, and vascular endothelial growth factor was markedly elevated in U251 O. The hyperproliferative and signaling effects seen in U251 O cells are abolished by selective CYP4A inhibition of 20-HETE formation with HET0016 [N-hydroxy-N′-(4-butyl-2-methylphenyl)-formamidine] , by small interfering RNA against the enzyme, and by the putative 20-HETE antagonist, 20-hydroxyeicosa-5(Z),14(Z)-dienoic acid. In vivo, implantation of U251O cells in the brain of nude rats resulted in a ∼10-fold larger tumor volume (10 days postimplantation) compared with animals receiving mock-transfected U251 cells. These data show that elevations in 20-HETE synthesis in U251 cells lead to an increased growth both in vitro and in vivo. This suggests that 20-HETE may have proto-oncogenic properties in U251 human gliomas. Further studies are needed to determine whether 20-HETE plays a role promoting growth of some human gliomas.
AB - Exogenous 20-hydroxyeicosatetraenoic acid (20-HETE) increases the growth of human glioma cells in vitro. However, glioma cells in culture show negligible 20-HETE synthesis. We examined whether inducing the expression of a 20-HETE synthase in a human glioma U251 cell line would increase proliferation. U251 cells transfected with CYP4A1 cDNA (termed U251 O) increased the formation of 20-HETE from less than 1 to over 60 pmol/min/mg proteins and increased their proliferation rate by 2-fold (p < 0.01). Compared with control U251, U251 O cells were rounded, smaller, showed a disorganized cytoskeleton, exhibited reduced vinculin staining, and were easily detached from the growing surface. They showed a marked increase in dihydroethidium staining, suggesting increased oxidative stress. The expression of phosphorylated extracellular signal-regulated kinase 1/2, cyclin D1/2, and vascular endothelial growth factor was markedly elevated in U251 O. The hyperproliferative and signaling effects seen in U251 O cells are abolished by selective CYP4A inhibition of 20-HETE formation with HET0016 [N-hydroxy-N′-(4-butyl-2-methylphenyl)-formamidine] , by small interfering RNA against the enzyme, and by the putative 20-HETE antagonist, 20-hydroxyeicosa-5(Z),14(Z)-dienoic acid. In vivo, implantation of U251O cells in the brain of nude rats resulted in a ∼10-fold larger tumor volume (10 days postimplantation) compared with animals receiving mock-transfected U251 cells. These data show that elevations in 20-HETE synthesis in U251 cells lead to an increased growth both in vitro and in vivo. This suggests that 20-HETE may have proto-oncogenic properties in U251 human gliomas. Further studies are needed to determine whether 20-HETE plays a role promoting growth of some human gliomas.
UR - http://www.scopus.com/inward/record.url?scp=52649173364&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=52649173364&partnerID=8YFLogxK
U2 - 10.1124/jpet.108.140889
DO - 10.1124/jpet.108.140889
M3 - Article
C2 - 18591218
AN - SCOPUS:52649173364
SN - 0022-3565
VL - 327
SP - 10
EP - 19
JO - The Journal of pharmacology and experimental therapeutics
JF - The Journal of pharmacology and experimental therapeutics
IS - 1
ER -