Extensive skeletal muscle cell mitochondriopathy distinguishes critical limb ischemia patients from claudicants

Terence E. Ryan, Dean J. Yamaguchi, Cameron A. Schmidt, Tonya N. Zeczycki, Saame Raza Shaikh, Patricia Brophy, Thomas D. Green, Michael D. Tarpey, Reema Karnekar, Emma J. Goldberg, Genevieve C. Sparagna, Maria J. Torres, Brian H. Annex, P. Darrell Neufer, Espen E. Spangenburg, Joseph M. McClung

Research output: Contribution to journalArticlepeer-review

45 Scopus citations


The most severe manifestation of peripheral arterial disease (PAD) is critical limb ischemia (CLI). CLI patients suffer high rates of amputation and mortality; accordingly, there remains a clear need both to better understand CLI and to develop more effective treatments. Gastrocnemius muscle was obtained from 32 older (51-84 years) non-PAD controls, 27 claudicating PAD patients (ankle-brachial index [ABI] 0.65 ± 0.21 SD), and 19 CLI patients (ABI 0.35 ± 0.30 SD) for whole transcriptome sequencing and comprehensive mitochondrial phenotyping. Comparable permeabilized myofiber mitochondrial function was paralleled by both similar mitochondrial content and related mRNA expression profiles in non-PAD control and claudicating patient tissues. Tissues from CLI patients, despite being histologically intact and harboring equivalent mitochondrial content, presented a unique bioenergetic signature. This signature was defined by deficits in permeabilized myofiber mitochondrial function and a unique pattern of both nuclear and mitochondrial encoded gene suppression. Moreover, isolated muscle progenitor cells retained both mitochondrial functional deficits and gene suppression observed in the tissue. These findings indicate that muscle tissues from claudicating patients and non-PAD controls were similar in both their bioenergetics profile and mitochondrial phenotypes. In contrast, CLI patient limb skeletal muscles harbor a unique skeletal muscle mitochondriopathy that represents a potentially novel therapeutic site for intervention.

Original languageEnglish (US)
JournalJCI Insight
Issue number21
StatePublished - Nov 2 2018
Externally publishedYes


  • Atherosclerosis
  • Cardiovascular disease
  • Metabolism
  • Skeletal muscle

ASJC Scopus subject areas

  • Medicine(all)


Dive into the research topics of 'Extensive skeletal muscle cell mitochondriopathy distinguishes critical limb ischemia patients from claudicants'. Together they form a unique fingerprint.

Cite this