TY - JOUR
T1 - Identification of a renal-specific oxido-reductase in newborn diabetic mice
AU - Yang, Qiwei
AU - Dixit, Bharat
AU - Wada, Jun
AU - Tian, Yufeng
AU - Wallner, Elisabeth I.
AU - Srivastva, Satish K.
AU - Kanwar, Yashpal S.
PY - 2000/8/29
Y1 - 2000/8/29
N2 - Aldose reductase (ALR2), a NADPH-dependent aldo-keto reductase (AKR), is widely distributed in mammalian tissues and has been implicated in complications of diabetes, including diabetic nephropathy. To identify a renal-specific reductase belonging to the AKR family, representational difference analyses of cDNA from diabetic mouse kidney were performed. A full-length cDNA with an ORF of 855 nt and yielding a ≃ 1.5-kb mRNA transcript was isolated from a mouse kidney library. Human and rat homologues also were isolated, and they had ≃ 91% and ≃ 97% amino acid identity with mouse protein. In vitro translation of the cDNA yielded a protein product of ≃ 33 kDa. Northern and Western blot analyses, using the cDNA and antirecombinant protein antibody, revealed its expression exclusively confined to the kidney. Like ALR2, the expression was up-regulated in diabetic kidneys. Its mRNA and protein expression was restricted to renal proximal tubules. The gene neither codistributed with Tamm-Horsfall protein nor aquaporin-2. The deduced protein sequence revealed an AKR-3 motif located near the N terminus, unlike the other AKR family members where it is confined to the C terminus. Fluorescence quenching and reactive blue agarose chromatography studies revealed that it binds to NADPH with high affinity (K(dNADPH) = 66.9 ± 2.3 nM). This binding domain is a tetrapeptide (Met-Ala-Lys-Ser) located within the AKR-3 motif that is similar to the other AKR members. The identified protein is designated as RSOR because it is renal-specific with properties of an oxido-reductase, and like ALR2 it may be relevant in the renal complications of diabetes mellitus.
AB - Aldose reductase (ALR2), a NADPH-dependent aldo-keto reductase (AKR), is widely distributed in mammalian tissues and has been implicated in complications of diabetes, including diabetic nephropathy. To identify a renal-specific reductase belonging to the AKR family, representational difference analyses of cDNA from diabetic mouse kidney were performed. A full-length cDNA with an ORF of 855 nt and yielding a ≃ 1.5-kb mRNA transcript was isolated from a mouse kidney library. Human and rat homologues also were isolated, and they had ≃ 91% and ≃ 97% amino acid identity with mouse protein. In vitro translation of the cDNA yielded a protein product of ≃ 33 kDa. Northern and Western blot analyses, using the cDNA and antirecombinant protein antibody, revealed its expression exclusively confined to the kidney. Like ALR2, the expression was up-regulated in diabetic kidneys. Its mRNA and protein expression was restricted to renal proximal tubules. The gene neither codistributed with Tamm-Horsfall protein nor aquaporin-2. The deduced protein sequence revealed an AKR-3 motif located near the N terminus, unlike the other AKR family members where it is confined to the C terminus. Fluorescence quenching and reactive blue agarose chromatography studies revealed that it binds to NADPH with high affinity (K(dNADPH) = 66.9 ± 2.3 nM). This binding domain is a tetrapeptide (Met-Ala-Lys-Ser) located within the AKR-3 motif that is similar to the other AKR members. The identified protein is designated as RSOR because it is renal-specific with properties of an oxido-reductase, and like ALR2 it may be relevant in the renal complications of diabetes mellitus.
KW - Diabetes mellitus
KW - Diabetic nephropathy
UR - http://www.scopus.com/inward/record.url?scp=0034730130&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034730130&partnerID=8YFLogxK
U2 - 10.1073/pnas.160266197
DO - 10.1073/pnas.160266197
M3 - Article
C2 - 10944187
AN - SCOPUS:0034730130
SN - 0027-8424
VL - 97
SP - 9896
EP - 9901
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 18
ER -