Identification of domains directing specificity of coupling to G-proteins for the melanocortin MC3 and MC4 receptors

Chung Sub Kim, Soo Hyun Lee, Ryang Yeo Kim, Byung Jin Kim, Song Zhe Li, In Hye Lee, Eun Jin Lee, Sung Kil Lim, Yun Soo Bae, Weontae Lee, Ja Hyun Baik

Research output: Contribution to journalArticlepeer-review

39 Scopus citations

Abstract

The melanocortin receptors, MC3R and MC4R, are G protein-coupled receptors that are involved in regulating energy homeostasis. Using a luciferase reporter gene under the transcriptional control of a cAMP-responsive element (CRE), the coupling efficiency of the MC4R and MC3R to G-proteins was previously shown to be different. MC4R exhibited only 30-50% of the maximum activity induced by MC3R. To assess the role of the different MC3R and MC4R domains in G-protein coupling, several chimeric MC3R/MC4R receptors were constructed. The relative luciferase activities, which were assessed after transfecting the chimeric receptors into HEK 293T cells, showed that the i3 (3rd intracellular) loop domain has an essential role in the differential signaling of MC3R and MC4R. To reveal which amino acid residue was involved in the MC4R-specific signaling in the i3 loop, a series of mutant MC4Rs was constructed. Reporter gene analysis showed that single mutations of Arg220 to Ala and Thr232 to either Val or Ala increased the relative luciferase activities, which suggests that these specific amino acids, Arg220 and Thr232, in the i3 loop of MC4R play crucial roles in G-protein coupling and the subtype-specific signaling pathways. An examination of the inositol phosphate (IP) levels in the cells transfected with either MC3R or MC4R after being exposed to the melanocortin peptides revealed significant stimulation of IP production by MC3R but no detectable increase in IP production was observed by MC4R. Furthermore, none of the MC4R mutants displayed melanocortin peptide-stimulated IP production. Overall, this study demonstrated that MC3R and MC4R have distinct signaling in either the cAMP- or the inositol phospholipid-mediated pathway with different conformational requirements.

Original languageEnglish (US)
Pages (from-to)31310-31317
Number of pages8
JournalJournal of Biological Chemistry
Volume277
Issue number35
DOIs
StatePublished - Aug 30 2002
Externally publishedYes

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Identification of domains directing specificity of coupling to G-proteins for the melanocortin MC3 and MC4 receptors'. Together they form a unique fingerprint.

Cite this