Intact mitochondrial substrate efflux is essential for prevention of tubular injury in a sex-dependent manner

Allison McCrimmon, Kerin M. Cahill, Claudia Kruger, Margaret E. Mangelli, Emily Bouffard, Timothy Dobroski, Kelly N. Michanczyk, Susan J. Burke, Robert C. Noland, Daria V. Ilatovskaya, Krisztian Stadler

Research output: Contribution to journalArticlepeer-review

2 Scopus citations


The importance of healthy mitochondrial function is implicated in the prevention of chronic kidney disease (CKD) and diabetic kidney disease (DKD). Sex differences also play important roles in DKD. Our previous studies revealed that mitochondrial substrate overload (modeled by homozygous deletion of carnitine acetyl-transferase [CrAT]) in proximal tubules causes renal injury. Here, we demonstrate the importance of intact mitochondrial substrate efflux by titrating the amount of overload through the generation of a heterozygous CrAT-KO model (PT-CrATHET mouse). Intriguingly, these animals developed renal injury similarly to their homozygous counterparts. Mitochondria were structurally and functionally impaired in both sexes. Transcriptomic analyses, however, revealed striking sex differences. Male mice shut down fatty acid oxidation and several other metabolism-related pathways. Female mice had a significantly weaker transcriptional response in metabolism, but activation of inflammatory pathways was prominent. Proximal tubular cells from PT-CrATHET mice of both sexes exhibited a shift toward a more glycolytic phenotype, but female mice were still able to oxidize fatty acid–based substrates. Our results demonstrate that maintaining mitochondrial substrate metabolism balance is crucial to satisfying proximal tubular energy demand. Our findings have potentially broad implications, as both the glycolytic shift and the sexual dimorphisms discovered herein offer potentially new modalities for future interventions for treating kidney disease.

Original languageEnglish (US)
Article numbere150696
JournalJCI Insight
Issue number7
StatePublished - Apr 8 2022

ASJC Scopus subject areas

  • Medicine(all)


Dive into the research topics of 'Intact mitochondrial substrate efflux is essential for prevention of tubular injury in a sex-dependent manner'. Together they form a unique fingerprint.

Cite this