Magnetic Resonance Imaging of Labeled T-Cells in a Mouse Model of Multiple Sclerosis

Stasia A. Anderson, Jacqueline Shukaliak-Quandt, Elaine K. Jordan, Ali S. Arbab, Roland Martin, Henry McFarland, Joseph A. Frank

Research output: Contribution to journalArticlepeer-review

147 Scopus citations


Multiple sclerosis (MS) is a T cell-mediated autoimmune disease with early lesions characterized by mononuclear cellular infiltrate, edema, demyelination, and axonal loss that contribute to the clinical course of the disease. Experimental autoimmune encephalomyelitis (EAE) in the mouse is a valuable model with a similar disease course to relapsing-remitting MS. The ability to detect the migration of encephalitogenic T cells into the central nervous system in EAE and MS would provide key information on these cells role in the development of lesions observed on magnetic resonance imaging (MRI). T cells were labeled for detection by magnetic resonance imaging using Food and Drug Administration-approved, superparamagnetic iron oxide nanoparticles (Ferumoxides) complexed to poly-L-Lysine (FE-PLL). EAE was induced by adoptive transfer of either labeled or unlabeled T cells. After disease onset, FE-PLL-labeled T cells were detected in the mouse spinal cord using in vivo and ex vivo cellular MRI. Excellent correlation was seen between MRI-visible lesions in the spinal cord and histopathology. The results demonstrate that T cells labeled with FE-PLL can induce EAE disease and can be detected in vivo in the mouse model. The magnetic labeling of cells opens the possibility of monitoring specific cellular phenotypes or pharmacologically or genetically engineered cells by MRI.

Original languageEnglish (US)
Pages (from-to)654-659
Number of pages6
JournalAnnals of Neurology
Issue number5
StatePublished - May 2004
Externally publishedYes

ASJC Scopus subject areas

  • Neurology
  • Clinical Neurology


Dive into the research topics of 'Magnetic Resonance Imaging of Labeled T-Cells in a Mouse Model of Multiple Sclerosis'. Together they form a unique fingerprint.

Cite this