Mass loss in urethane/TEGDMA- and Bis-GMA/TEGDMA-based resin composites during post-cure heating.

Y. H. Bagis, F. A. Rueggeberg

Research output: Contribution to journalArticlepeer-review

17 Scopus citations


OBJECTIVES: This research examined weight loss of commercial UDMA/TEGDMA- and Bis-GMA/TEGDMA-based resin composites at a variety of post-cure temperatures. Weight loss profiles of individual monomer components were also tested at elevated temperature: Bis-GMA, ethoxylated Bis-GMA (EBis-GMA), urethane dimethacrylate (UDMA), and triethyleneglycol dimethacrylate (TEGDMA). METHODS: Disc-shaped composite specimens (1 x 5 mm, approximately 50 mg) were light-cured and then isothermally post-cure heated in a thermogravimetric analysis (TGA) unit at either 50 degrees, 75 degrees, 100 degrees, 125 degrees or 150 degrees C. A single specimen was made for each post-cure temperature for each product (a total of 10 discs). Individual monomer components were heated to 800 degrees C. Filler and organic phase weight percentages were determined by ashing cured composite in the TGA. Weight loss differences between resin systems at various post-cure temperatures were analyzed using linear regression. RESULTS: For each type of composite, loss of volatile component increased with both elevated post-cure temperature as well as duration of heat exposure. Using recommended post-cure temperature and time (125 degrees C for 7.5 minutes), there was no difference in weight loss profile between the two products: both exhibited 1.3% loss of resin component. After 10 min of heating, the Bis-GMA-based product always demonstrated a greater weight loss than the UDMA material. Weight loss could not be attributed to any specific monomer. SIGNIFICANCE: Specimen weight loss during post-cure heating may result in a depletion of leachable, unreacted material at the restoration surface, possibly enhancing material properties at that location. This decrease would also potentially reduce the biological impact of leachable materials. Loss of volatile components from post-cure heating would affect the accuracy of infrared spectroscopic techniques in determining monomer conversion values.

Original languageEnglish (US)
Pages (from-to)377-380
Number of pages4
JournalDental materials : official publication of the Academy of Dental Materials
Issue number6
StatePublished - Nov 1997
Externally publishedYes

ASJC Scopus subject areas

  • Materials Science(all)
  • Dentistry(all)
  • Mechanics of Materials


Dive into the research topics of 'Mass loss in urethane/TEGDMA- and Bis-GMA/TEGDMA-based resin composites during post-cure heating.'. Together they form a unique fingerprint.

Cite this