TY - JOUR
T1 - Micromorphology of resin-dentin interfaces using one-bottle etch&rinse and self-etching adhesive systems on laser-treated dentin surfaces
T2 - A confocal laser scanning microscope analysis
AU - De Oliveira, Marcelo Tavares
AU - Arrais, Cesar Augusto Galvão
AU - Aranha, Ana Cecília
AU - Eduardo, Carlos De Paula
AU - Miyake, Katsuya
AU - Rueggeberg, Frederick
AU - Giannini, Marcelo
PY - 2010/9/1
Y1 - 2010/9/1
N2 - Background and Objectives: This study evaluated the hybrid layer (HL) morphology created by three adhesive systems (AS) on dentin surfaces treated with Er:YAG laser using two irradiation parameters. Study Design: Occlusal flat dentin surfaces of 36 human third molars were assigned into nine groups (n=4) according to the following ASs: one bottle etch&rinse Single Bond Plus (3M ESPE), two-step Clearfil Protect Bond (Kuraray), and all-in-one S3 Bond (Kuraray) self-etching, which were labeled with rhodamine B or fluorescein isothiocyanate-dextran and were applied to dentin surfaces that were irradiated with Er:YAG laser at either 120 (38.7 J/cm2) or 200 mJ/pulse (64.5 J/cm2), or were applied to untreated dentin surfaces (control group). The ASs were light-activated following MI and the bonded surfaces were restored with resin composite Z250 (3M ESPE). After 24 hours of storage in vegetable oil, the restored teeth were vertically, serially sectioned into 1-mm thick slabs, which had the adhesive interfaces analyzed with confocal laser microscope (CLSM - LSM 510 Meta). CLSM images were recorded in the fluorescent mode from three different regions along each bonded interface. Results: Non-uniform HL was created on laser-irradiated dentin surfaces regardless of laser irradiation protocol for all AS, while regular and uniform HL was observed in the control groups. "Stretch mark"-like red lines were found within the HL as a result of resin infiltration into dentin microfissures, which were predominantly observed in 200 mJ/pulse groups regardless of AS. Poor resin infiltration into peritubular dentin was observed in most regions of adhesive interfaces created by all ASs on laser-irradiated dentin, resulting in thin resin tags with neither funnelshaped morphology nor lateral resin projections. Conclusion: Laser irradiation of dentin surfaces at 120 or 200 mJ/pulse resulted in morphological changes in HL and resin tags for all ASs evaluated in the study.
AB - Background and Objectives: This study evaluated the hybrid layer (HL) morphology created by three adhesive systems (AS) on dentin surfaces treated with Er:YAG laser using two irradiation parameters. Study Design: Occlusal flat dentin surfaces of 36 human third molars were assigned into nine groups (n=4) according to the following ASs: one bottle etch&rinse Single Bond Plus (3M ESPE), two-step Clearfil Protect Bond (Kuraray), and all-in-one S3 Bond (Kuraray) self-etching, which were labeled with rhodamine B or fluorescein isothiocyanate-dextran and were applied to dentin surfaces that were irradiated with Er:YAG laser at either 120 (38.7 J/cm2) or 200 mJ/pulse (64.5 J/cm2), or were applied to untreated dentin surfaces (control group). The ASs were light-activated following MI and the bonded surfaces were restored with resin composite Z250 (3M ESPE). After 24 hours of storage in vegetable oil, the restored teeth were vertically, serially sectioned into 1-mm thick slabs, which had the adhesive interfaces analyzed with confocal laser microscope (CLSM - LSM 510 Meta). CLSM images were recorded in the fluorescent mode from three different regions along each bonded interface. Results: Non-uniform HL was created on laser-irradiated dentin surfaces regardless of laser irradiation protocol for all AS, while regular and uniform HL was observed in the control groups. "Stretch mark"-like red lines were found within the HL as a result of resin infiltration into dentin microfissures, which were predominantly observed in 200 mJ/pulse groups regardless of AS. Poor resin infiltration into peritubular dentin was observed in most regions of adhesive interfaces created by all ASs on laser-irradiated dentin, resulting in thin resin tags with neither funnelshaped morphology nor lateral resin projections. Conclusion: Laser irradiation of dentin surfaces at 120 or 200 mJ/pulse resulted in morphological changes in HL and resin tags for all ASs evaluated in the study.
KW - Bonding agents
KW - Bonding interface morphology
KW - Dentin
KW - Er:YAG laser
UR - http://www.scopus.com/inward/record.url?scp=77956677456&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77956677456&partnerID=8YFLogxK
U2 - 10.1002/lsm.20945
DO - 10.1002/lsm.20945
M3 - Article
C2 - 20806391
AN - SCOPUS:77956677456
SN - 0196-8092
VL - 42
SP - 662
EP - 670
JO - Lasers in Surgery and Medicine
JF - Lasers in Surgery and Medicine
IS - 7
ER -