MicroRNA-146b-3p regulates retinal inflammation by suppressing adenosine deaminase-2 in diabetes

Sadanand T Fulzele, Ahmed El-Sherbini, Saif Ahmad, Rajnikumar Sangani, Suraporn Matragoon, Azza El-Remessy, Reshmitha Radhakrishnan, Gregory I Liou

Research output: Contribution to journalArticlepeer-review

67 Scopus citations

Abstract

Hyperglycemia- (HG-) Amadori-glycated albumin- (AGA-) induced activation of microglia and monocytes and their adherence to retinal vascular endothelial cells contribute to retinal inflammation leading to diabetic retinopathy (DR). There is a great need for early detection of DR before demonstrable tissue damages become irreversible. Extracellular adenosine, required for endogenous anti-inflammation, is regulated by the interplay of equilibrative nucleoside transporter with adenosine deaminase (ADA) and adenosine kinase. ADA, including ADA1 and ADA2, exists in all organisms. However, because ADA2 gene has not been identified in mouse genome, how diabetes alters adenosine-dependent anti-inflammation remains unclear. Studies of pig retinal microglia and human macrophages revealed a causal role of ADA2 in inflammation. Database search suggested miR-146b-3p recognition sites in the 3′-UTR of ADA2 mRNA. Coexpression of miR-146b-3p, but not miR-146-5p or nontargeting miRNA, with 3′-UTR of the ADA2 gene was necessary to suppress a linked reporter gene. In the vitreous of diabetic patients, decreased miR-146b-3p is associated with increased ADA2 activity. Ectopic expression of miR-146b-3p suppressed ADA2 expression, activity, and TNF-α release in the AGA-treated human macrophages. These results suggest a regulatory role of miR-146b-3p in diabetes related retinal inflammation by suppressing ADA2.

Original languageEnglish (US)
Article number846501
JournalBioMed Research International
Volume2015
DOIs
StatePublished - 2015

ASJC Scopus subject areas

  • General Immunology and Microbiology
  • General Biochemistry, Genetics and Molecular Biology

Fingerprint

Dive into the research topics of 'MicroRNA-146b-3p regulates retinal inflammation by suppressing adenosine deaminase-2 in diabetes'. Together they form a unique fingerprint.

Cite this