Minocycline and tissue-type plasminogen activator for stroke: assessment of interaction potential.

Livia S. Machado, Irina Yurievna Sazonova, Anna Kozak, Daniel C. Wiley, Azza B. El-Remessy, Adviye Ergul, David C. Hess, Jennifer L. Waller, Susan C. Fagan

Research output: Contribution to journalArticlepeer-review

91 Scopus citations


BACKGROUND AND PURPOSE: New treatment strategies for acute ischemic stroke must be evaluated in the context of effective reperfusion. Minocycline is a neuroprotective agent that inhibits proteolytic enzymes and therefore could potentially both inactivate the clot lysis effect and decrease the damaging effects of tissue-type plasminogen activator (t-PA). This study aimed to determine the effect of minocycline on t-PA clot lysis and t-PA-induced hemorrhage formation after ischemia. METHODS: Fibrinolytic and amidolytic activities of t-PA were investigated in vitro over a range of clinically relevant minocycline concentrations. A suture occlusion model of 3-hour temporary cerebral ischemia in rats treated with t-PA and 2 different minocycline regimens was used. Blood-brain barrier basal lamina components, matrix metalloproteinases (MMPs), hemorrhage formation, infarct size, edema, and behavior outcome were assessed. RESULTS: Minocycline did not affect t-PA fibrinolysis. However, minocycline treatment at 3 mg/kg IV decreased total protein expression of both MMP-2 (P=0.0034) and MMP-9 (P=0.001 for 92 kDa and P=0.0084 for 87 kDa). It also decreased the incidence of hemorrhage (P=0.019), improved neurologic outcome (P=0.0001 for Bederson score and P=0.0391 for paw grasp test), and appeared to decrease mortality. MMP inhibition was associated with decreased degradation in collagen IV and laminin-alpha1 (P=0.0001). CONCLUSIONS: Combination treatment with minocycline is beneficial in t-PA-treated animals and does not compromise clot lysis. These results also suggest that neurovascular protection by minocycline after stroke may involve direct protection of the blood-brain barrier during thrombolysis with t-PA.

Original languageEnglish (US)
Pages (from-to)3028-3033
Number of pages6
JournalStroke; a journal of cerebral circulation
Issue number9
StatePublished - 2009

ASJC Scopus subject areas

  • Clinical Neurology
  • Cardiology and Cardiovascular Medicine
  • Advanced and Specialized Nursing


Dive into the research topics of 'Minocycline and tissue-type plasminogen activator for stroke: assessment of interaction potential.'. Together they form a unique fingerprint.

Cite this