TY - JOUR
T1 - Modulation of immunogenicity and antigenicity of proteins by maleylation to target scavenger receptors on macrophages
AU - Abraham, R.
AU - Singh, Nagendra
AU - Mukhopadhyay, A.
AU - Basu, S. K.
AU - Bal, V.
AU - Rath, S.
N1 - Copyright:
Copyright 2004 Elsevier B.V., All rights reserved.
PY - 1995
Y1 - 1995
N2 - We have maleylated proteins to target macrophage-specific scavenger receptors and have used this system to study changes in the epitopes and immunogenicity of such proteins. We show that maleylation of diphtheria toxoid (DT) induces targeting to macrophage scavenger receptors and enhances its immunogenicity. DT does not evoke detectable serum Ab responses upon injection as soluble protein. However, maleylated DT (mDT) does generate a significant Ab response. Furthermore, immunization with soluble mDT leads to a better T cell proliferative response in vitro than immunization with DT can generate, thereby demonstrating that maleylation leads to enhanced T cell immunogenicity in vivo. We also find that maleylation disrupts the native B cell epitopes of DT and creates new epitopes, because antisera to DT and mDT do not cross-react. At least some of the new epitopes generated are maleylation specific, because antisera against various maleylated proteins do cross-react. In contrast, maleylation does not significantly modify the repertoire of T cell epitopes generated from DT, because T cells generated by either DT or mDT immunization are cross-reactive, and both DT and mDT can stimulate T cells that are specific for a single synthetic DT peptide. Maleylated proteins are better presented in vitro than are their native counterparts, and this enhancement of presentation is blocked by unrelated maleylated proteins. These results suggest that Ags targeted to scavenger receptors on macrophages by maleylation are better presented to T cells and are immunogenic in rive without adjuvant.
AB - We have maleylated proteins to target macrophage-specific scavenger receptors and have used this system to study changes in the epitopes and immunogenicity of such proteins. We show that maleylation of diphtheria toxoid (DT) induces targeting to macrophage scavenger receptors and enhances its immunogenicity. DT does not evoke detectable serum Ab responses upon injection as soluble protein. However, maleylated DT (mDT) does generate a significant Ab response. Furthermore, immunization with soluble mDT leads to a better T cell proliferative response in vitro than immunization with DT can generate, thereby demonstrating that maleylation leads to enhanced T cell immunogenicity in vivo. We also find that maleylation disrupts the native B cell epitopes of DT and creates new epitopes, because antisera to DT and mDT do not cross-react. At least some of the new epitopes generated are maleylation specific, because antisera against various maleylated proteins do cross-react. In contrast, maleylation does not significantly modify the repertoire of T cell epitopes generated from DT, because T cells generated by either DT or mDT immunization are cross-reactive, and both DT and mDT can stimulate T cells that are specific for a single synthetic DT peptide. Maleylated proteins are better presented in vitro than are their native counterparts, and this enhancement of presentation is blocked by unrelated maleylated proteins. These results suggest that Ags targeted to scavenger receptors on macrophages by maleylation are better presented to T cells and are immunogenic in rive without adjuvant.
UR - http://www.scopus.com/inward/record.url?scp=0028893762&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0028893762&partnerID=8YFLogxK
M3 - Article
C2 - 7527810
AN - SCOPUS:0028893762
SN - 0022-1767
VL - 154
SP - 1
EP - 8
JO - Journal of Immunology
JF - Journal of Immunology
IS - 1
ER -