Negative regulation of filamentous growth in Candida albicans by Dig1p

Hannah Regan, Christine M. Scaduto, Matthew P. Hirakawa, Kearney Gunsalus, Tuana Oliveira Correia-Mesquita, Yuan Sun, Yaolin Chen, Carol A. Kumamoto, Richard J. Bennett, Malcolm Whiteway

Research output: Contribution to journalArticlepeer-review

10 Scopus citations


Transcriptional regulation involves both positive and negative regulatory elements. The Dig1 negative regulators are part of a fungal-specific module that includes a transcription factor (a Ste12 family member) and a Dig1 family member. In Saccharomyces cerevisiae, the post-genome-duplication Dig1/Dig2 proteins regulate MAP kinase controlled signalling pathways involved in mating and filamentous growth. We have identified the single Dig1 orthologue in the fungal pathogen Candida albicans. Genetic studies and transcriptional profiling experiments show that this single protein is implicated in the regulation of MAP kinase-controlled processes involved in mating, filamentous growth and biofilm formation, and also influences cAMP-regulated processes. This suggests that the multiple cellular roles of the Dig1 protein are ancestral and predate the sub-functionalization apparent in S. cerevisiae after the genome duplication. Intriguingly, even though loss of Dig1 function in C. albicans enhances filamentous growth and biofilm formation, colonization of the murine gastrointestinal tract is reduced in the mutant. The complexity of the processes influenced by Dig1 in C. albicans, and the observation that Dig1 is one of the few regulatory proteins that were retained in the duplicated state after the whole genome duplication event in yeast, emphasizes the important role of these negative regulators in fungal transcriptional control.

Original languageEnglish (US)
Pages (from-to)810-824
Number of pages15
JournalMolecular Microbiology
Issue number5
StatePublished - Sep 2017
Externally publishedYes

ASJC Scopus subject areas

  • Microbiology
  • Molecular Biology


Dive into the research topics of 'Negative regulation of filamentous growth in Candida albicans by Dig1p'. Together they form a unique fingerprint.

Cite this