Neurabin scaffolding of adenosine receptor and RGS4 regulates anti-seizure effect of endogenous adenosine

Yunjia Chen, Yin Liu, Christopher Cottingham, Lori McMahon, Kai Jiao, Paul Greengard, Qin Wang

Research output: Contribution to journalArticlepeer-review

31 Scopus citations

Abstract

Endogenous adenosine is an essential protective agent against neural damage by various insults to the brain. However, the therapeutic potential of adenosine receptor-directed ligands for neuroprotection is offset by side effects in peripheral tissues and organs. An increase in adenosine receptor responsiveness to endogenous adenosine would enhance neuroprotection while avoiding the confounding effects of exogenous ligands. Here we report novel regulation of adenosine-evoked responses by a neural tissue-specific protein, neurabin. Neurabin attenuated adenosine A 1 receptor (A1R) signaling by assembling a complex between the A1R and the regulator of G-protein signaling 4 (RGS4), a protein known to turn off G-protein signaling. Inactivation of the neurabin gene enhanced A1R signaling and promoted the protective effect of adenosine against excitotoxic seizure and neuronal death in mice. Furthermore, administration of a small molecule inhibitor of RGS4 significantly attenuated seizure severity in mice. Notably, the dose of kainate capable of inducing an ∼50%rate of death in wild-type (WT) mice did not affect neurabin-null mice orWTmice cotreated with an RGS4 inhibitor. The enhanced anti-seizure and neuroprotective effect achieved by disruption of the A1R/neurabin/RGS4 complex is elicited by the on-site and ondemand release of endogenous adenosine, and does not require administration of A1R ligands. These data identify neurabin-RGS4 as a novel tissue-selective regulatory mechanism for fine-tuning adenosine receptor function in the nervous system. Moreover, these findings implicate the A1R/neurabin/RGS4 complex as a valid therapeutic target for specifically manipulating the neuroprotective effects of endogenous adenosine.

Original languageEnglish (US)
Pages (from-to)2683-2695
Number of pages13
JournalJournal of Neuroscience
Volume32
Issue number8
DOIs
StatePublished - Feb 22 2012
Externally publishedYes

ASJC Scopus subject areas

  • General Neuroscience

Fingerprint

Dive into the research topics of 'Neurabin scaffolding of adenosine receptor and RGS4 regulates anti-seizure effect of endogenous adenosine'. Together they form a unique fingerprint.

Cite this