Osteocytes directly regulate osteolysis via MYD88 signaling in bacterial bone infection

Tetsuya Yoshimoto, Mizuho Kittaka, Andrew Anh Phuong Doan, Rina Urata, Matthew Prideaux, Roxana E. Rojas, Clifford V. Harding, W. Henry Boom, Lynda F. Bonewald, Edward M. Greenfield, Yasuyoshi Ueki

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

The impact of bone cell activation on bacterially-induced osteolysis remains elusive. Here, we show that matrix-embedded osteocytes stimulated with bacterial pathogen-associated molecular patterns (PAMPs) directly drive bone resorption through an MYD88-regulated signaling pathway. Mice lacking MYD88, primarily in osteocytes, protect against osteolysis caused by calvarial injections of bacterial PAMPs and resist alveolar bone resorption induced by oral Porphyromonas gingivalis (Pg) infection. In contrast, mice with targeted MYD88 restoration in osteocytes exhibit osteolysis with inflammatory cell infiltration. In vitro, bacterial PAMPs induce significantly higher expression of the cytokine RANKL in osteocytes than osteoblasts. Mechanistically, activation of the osteocyte MYD88 pathway up-regulates RANKL by increasing binding of the transcription factors CREB and STAT3 to Rankl enhancers and by suppressing K48-ubiquitination of CREB/CREB binding protein and STAT3. Systemic administration of an MYD88 inhibitor prevents jawbone loss in Pg-driven periodontitis. These findings reveal that osteocytes directly regulate inflammatory osteolysis in bone infection, suggesting that MYD88 and downstream RANKL regulators in osteocytes are therapeutic targets for osteolysis in periodontitis and osteomyelitis.

Original languageEnglish (US)
Article number6648
JournalNature communications
Volume13
Issue number1
DOIs
StatePublished - Dec 2022
Externally publishedYes

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Osteocytes directly regulate osteolysis via MYD88 signaling in bacterial bone infection'. Together they form a unique fingerprint.

Cite this