TY - JOUR
T1 - P2 receptor regulation of [Ca2+]i in cultured mouse mesangial cells
AU - Rivera, Ian
AU - Zhang, Shali
AU - Fuller, B. Scott
AU - Edwards, Brentan
AU - Seki, Tsugio
AU - Wang, Mong Heng
AU - Marrero, Mario B.
AU - Inscho, Edward W.
PY - 2007/5
Y1 - 2007/5
N2 - Experiments were performed to establish the pharmacological profile of purinoceptors and to identify the signal transduction pathways responsible for increases in intracellular calcium concentration ([Ca2+]i) for cultured mouse mesangial cells. Mouse mesangial cells were loaded with fura 2 and examined using fluorescent spectrophotometry. Basal [Ca 2+]i averaged 102 ± 2 nM (n = 346). One hundred micromolar concentrations of ATP, ADP, 2′,3′-(benzoyl-4-benzoyl)-ATP (BzATP), ATP-γ-S, and UTP in normal Ca2+ medium evoked peak increases in [Ca2+]i of 866 ± 111, 236 ± 18, 316 ± 26, 427 ± 37, and 808 ± 73 nM, respectively. UDP or 2-methylthio-ATP (2MeSATP) failed to elicit significant increases in [Ca 2+]i, whereas identical concentrations of adenosine, AMP, and α,β-methylene ATP (α,β-MeATP) had no detectable effect on [Ca2+]i. Removal of Ca2+ from the extracellular medium had no significant effect on the peak increase in [Ca 2+]i induced by ATP, ADP, BzATP, ATP-γ-S, or UTP compared with normal Ca2+; however, Ca2+-free conditions did accelerate the rate of decline in [Ca2+]i in cells treated with ATP and UTP. [Ca2+]i was unaffected by membrane depolarization with 143 mM KCl. Western blot analysis for P2 receptors revealed expression of P2X2, P2X4, P2X7, P2Y2, and P2Y4 receptors. No evidence of P2X1 and P2X3 receptor expression was detected, whereas RT-PCR analysis reveals mRNA expression for P2X1, P2X2, P2X3, P2X4, P2X7, P2Y2, and P2Y4 receptors. These data indicate that receptor-specific P2 receptor activation increases [Ca2+]i by stimulating calcium influx from the extracellular medium and through mobilization of Ca2+ from intracellular stores in cultured mouse mesangial cells.
AB - Experiments were performed to establish the pharmacological profile of purinoceptors and to identify the signal transduction pathways responsible for increases in intracellular calcium concentration ([Ca2+]i) for cultured mouse mesangial cells. Mouse mesangial cells were loaded with fura 2 and examined using fluorescent spectrophotometry. Basal [Ca 2+]i averaged 102 ± 2 nM (n = 346). One hundred micromolar concentrations of ATP, ADP, 2′,3′-(benzoyl-4-benzoyl)-ATP (BzATP), ATP-γ-S, and UTP in normal Ca2+ medium evoked peak increases in [Ca2+]i of 866 ± 111, 236 ± 18, 316 ± 26, 427 ± 37, and 808 ± 73 nM, respectively. UDP or 2-methylthio-ATP (2MeSATP) failed to elicit significant increases in [Ca 2+]i, whereas identical concentrations of adenosine, AMP, and α,β-methylene ATP (α,β-MeATP) had no detectable effect on [Ca2+]i. Removal of Ca2+ from the extracellular medium had no significant effect on the peak increase in [Ca 2+]i induced by ATP, ADP, BzATP, ATP-γ-S, or UTP compared with normal Ca2+; however, Ca2+-free conditions did accelerate the rate of decline in [Ca2+]i in cells treated with ATP and UTP. [Ca2+]i was unaffected by membrane depolarization with 143 mM KCl. Western blot analysis for P2 receptors revealed expression of P2X2, P2X4, P2X7, P2Y2, and P2Y4 receptors. No evidence of P2X1 and P2X3 receptor expression was detected, whereas RT-PCR analysis reveals mRNA expression for P2X1, P2X2, P2X3, P2X4, P2X7, P2Y2, and P2Y4 receptors. These data indicate that receptor-specific P2 receptor activation increases [Ca2+]i by stimulating calcium influx from the extracellular medium and through mobilization of Ca2+ from intracellular stores in cultured mouse mesangial cells.
KW - Ca signaling
KW - P2X receptors
KW - P2Y receptors
UR - http://www.scopus.com/inward/record.url?scp=34247847694&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34247847694&partnerID=8YFLogxK
U2 - 10.1152/ajprenal.00349.2006
DO - 10.1152/ajprenal.00349.2006
M3 - Article
C2 - 17213463
AN - SCOPUS:34247847694
SN - 0363-6127
VL - 292
SP - F1380-F1389
JO - American Journal of Physiology - Renal Physiology
JF - American Journal of Physiology - Renal Physiology
IS - 5
ER -