Poor baseline pulmonary function may not increase the risk of radiation-induced lung toxicity

Jingbo Wang, Jianzhong Cao, Shuanghu Yuan, Wei Ji, Douglas Arenberg, Jianrong Dai, Paul Stanton, Daniel Tatro, Randall K. Ten Haken, Luhua Wang, Feng Ming Kong

Research output: Contribution to journalArticlepeer-review

46 Scopus citations


Purpose: Poor pulmonary function (PF) is often considered a contraindication to definitive radiation therapy for lung cancer. This study investigated whether baseline PF was associated with radiation-induced lung toxicity (RILT) in patients with non-small cell lung cancer (NSCLC) receiving conformal radiation therapy (CRT). Methods and Materials: NSCLC patients treated with CRT and tested for PF at baseline were eligible. Baseline predicted values of forced expiratory volume in 1 sec (FEV1), forced vital capacity (FVC), and diffusion capacity of lung for carbon monoxide (DLCO) were analyzed. Additional factors included age, gender, smoking status, Karnofsky performance status, coexisting chronic obstructive pulmonary disease (COPD), tumor location, histology, concurrent chemotherapy, radiation dose, and mean lung dose (MLD) were evaluated for RILT. The primary endpoint was symptomatic RILT (SRILT), including grade ≥2 radiation pneumonitis and fibrosis. Results: There was a total of 260 patients, and SRILT occurred in 58 (22.3%) of them. Mean FEV1 values for SRILT and non-SRILT patients were 71.7% and 65.9% (P=.077). Under univariate analysis, risk of SRILT increased with MLD (P=.008), the absence of COPD (P=.047), and FEV1 (P=.077). Age (65 split) and MLD were significantly associated with SRILT in multivariate analysis. The addition of FEV1 and age with the MLD-based model slightly improved the predictability of SRILT (area under curve from 0.63-0.70, P=.088). Conclusions: Poor baseline PF does not increase the risk of SRILT, and combining FEV1, age, and MLD may improve the predictive ability.

Original languageEnglish (US)
Pages (from-to)798-804
Number of pages7
JournalInternational Journal of Radiation Oncology Biology Physics
Issue number3
StatePublished - Mar 1 2013
Externally publishedYes

ASJC Scopus subject areas

  • Radiation
  • Oncology
  • Radiology Nuclear Medicine and imaging
  • Cancer Research


Dive into the research topics of 'Poor baseline pulmonary function may not increase the risk of radiation-induced lung toxicity'. Together they form a unique fingerprint.

Cite this