Abstract
Porous-wall hollow glass microspheres (PW-HGMs) are a novel form of glass material consisting of a 10- to 100-μm-diameter hollow central cavity surrounded by a 1-μm-thick silica shell. A tortuous network of nanometer-scale channels completely penetrates the shell. We show here that these channels promote size-dependent uptake and controlled release of biological molecules in the 3- to 8-nm range, including antibodies and a modified single-chain antibody variable fragment. In addition, a 6-nm (70-kDa) dextran can be used to gate the porous walls, facilitating controlled release of an internalized short interfering RNA. PW-HGMs remained in place after mouse intratumoral injection, suggesting a possible application for the delivery of anticancer drugs. The combination of a hollow central cavity that can carry soluble therapeutic agents with mesoporous walls for controlled release is a unique characteristic that distinguishes PW-HGMs from other glass materials for biomedical applications. From the Clinical Editor: Porous-wall hollow glass microspheres (PW-HGMs) are a novel form of glass microparticles with a tortuous network of nanometer-scale channels. These channels allow size-dependent uptake and controlled release of biological molecules including antibodies and single-chain antibody fragments. PW-HGMs remained in place after mouse intratumoral injection, suggesting a possible application for the delivery of anti-cancer drugs.
Original language | English (US) |
---|---|
Pages (from-to) | 127-136 |
Number of pages | 10 |
Journal | Nanomedicine: Nanotechnology, Biology, and Medicine |
Volume | 6 |
Issue number | 1 |
DOIs | |
State | Published - Feb 2010 |
Keywords
- Controlled release
- Drug delivery
- Mesoporous
- Microsphere
- Silica
- Single-chain antibody
- Single-chain antibody variable fragment
- Small interfering RNA
ASJC Scopus subject areas
- Bioengineering
- Medicine (miscellaneous)
- Molecular Medicine
- Biomedical Engineering
- General Materials Science
- Pharmaceutical Science