TY - JOUR
T1 - Quadruple Negative Breast Cancers (QNBC) Demonstrate Subtype Consistency among Primary and Recurrent or Metastatic Breast Cancer
AU - Angajala, Anusha
AU - Mothershed, Essynce
AU - Davis, Melissa B
AU - Tripathi, Shweta
AU - He, Qinghua
AU - Bedi, Deepa
AU - Dean-Colomb, Windy
AU - Yates, Clayton
N1 - Funding Information:
The breast cancer patient data used in this project was graciously provided by Caris Life Sciences®. This work was supported by grants U54-MD007585-26 NIH/NIMHD [CY], U54 CA118623 ( NIH/NCI ) [CY], (NIH/NCI) 1 R21 CA188799-01 [CY]; and a Department of Defense Grant, PC120913 , W81XWH-10-1-0543 .
Publisher Copyright:
© 2018 The Authors
PY - 2019/3
Y1 - 2019/3
N2 - PURPOSE: Despite the availability of current standards of care treatments for triple negative breast cancer (TNBC), many patients still die from this disease. Quadruple negative tumors, which are TNBC tumors that lack androgen receptor (AR), represent a more aggressive subtype of TNBC; however, the molecular features are not well understood. METHODS: Immunohistochemistry of estrogen receptor (ER), progesterone receptor (PR), HER2, and AR was determined in 244 primary and 630 recurrent/metastatic site biopsies. Expression was correlated with a panel of 25 cancer-related genes and proteins by IHC and in situ hybridization (ISH). RESULTS: We observed that 80.2% (65 of 81) of primary TNBC tumors and 75.7% (159 of 210) of recurrent/metastatic TNBC tumors are QNBC. Bivariate fit analysis demonstrated that QNBC (n = 224) significantly (P <.03) correlated with younger aged patients at initial biopsy compared to AR positive TNBC patients (n = 51). In paired primary tissue samples and primary to recurrent/metastatic samples, at least 70% Luminal, HER2 enriched, and QNBC subtype did not change molecular profile. But, TNBC seems to be the “unstable” subtype. Within the total cohort, discordance in molecular profiles was identified in both synchronous (20%) and asynchronous (21%) intra-individual analyses. Irrespective of sample type, (Synchronous or Asynchronous), QNBC demonstrated higher concordant than TNBC. IHC and ISH results of the cancer related genes, demonstrated that gene/protein expression differ by molecular profile: TNBC (HR-/HER2-, AR+) and QNBC (HR-/HER2-, AR-). IHC in metastatic tumors, showed that the percentage of tumors positive of EGFR were higher, while PTEN and TLE3 were lower in QNBC compared to TNBC. CONCLUSION: Standard treatment of Breast Cancer (BC) relies on reliable assessment by IHC analysis of ER, PR, and HER2. Our analyses suggest that the heterogeneity of TNBC is at least partially associated with the presence or absence of AR expression, suggesting that QNBC should be considered as a clinically relevant BC subtype. IHC analysis of AR appears to be a practical assay to determine the most aggressive TNBC subtypes and identifies tumors that could benefit from available targeted therapies.
AB - PURPOSE: Despite the availability of current standards of care treatments for triple negative breast cancer (TNBC), many patients still die from this disease. Quadruple negative tumors, which are TNBC tumors that lack androgen receptor (AR), represent a more aggressive subtype of TNBC; however, the molecular features are not well understood. METHODS: Immunohistochemistry of estrogen receptor (ER), progesterone receptor (PR), HER2, and AR was determined in 244 primary and 630 recurrent/metastatic site biopsies. Expression was correlated with a panel of 25 cancer-related genes and proteins by IHC and in situ hybridization (ISH). RESULTS: We observed that 80.2% (65 of 81) of primary TNBC tumors and 75.7% (159 of 210) of recurrent/metastatic TNBC tumors are QNBC. Bivariate fit analysis demonstrated that QNBC (n = 224) significantly (P <.03) correlated with younger aged patients at initial biopsy compared to AR positive TNBC patients (n = 51). In paired primary tissue samples and primary to recurrent/metastatic samples, at least 70% Luminal, HER2 enriched, and QNBC subtype did not change molecular profile. But, TNBC seems to be the “unstable” subtype. Within the total cohort, discordance in molecular profiles was identified in both synchronous (20%) and asynchronous (21%) intra-individual analyses. Irrespective of sample type, (Synchronous or Asynchronous), QNBC demonstrated higher concordant than TNBC. IHC and ISH results of the cancer related genes, demonstrated that gene/protein expression differ by molecular profile: TNBC (HR-/HER2-, AR+) and QNBC (HR-/HER2-, AR-). IHC in metastatic tumors, showed that the percentage of tumors positive of EGFR were higher, while PTEN and TLE3 were lower in QNBC compared to TNBC. CONCLUSION: Standard treatment of Breast Cancer (BC) relies on reliable assessment by IHC analysis of ER, PR, and HER2. Our analyses suggest that the heterogeneity of TNBC is at least partially associated with the presence or absence of AR expression, suggesting that QNBC should be considered as a clinically relevant BC subtype. IHC analysis of AR appears to be a practical assay to determine the most aggressive TNBC subtypes and identifies tumors that could benefit from available targeted therapies.
UR - http://www.scopus.com/inward/record.url?scp=85059084121&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85059084121&partnerID=8YFLogxK
U2 - 10.1016/j.tranon.2018.11.008
DO - 10.1016/j.tranon.2018.11.008
M3 - Article
AN - SCOPUS:85059084121
SN - 1936-5233
VL - 12
SP - 493
EP - 501
JO - Translational Oncology
JF - Translational Oncology
IS - 3
ER -