Quantitative structure–activity relationship between antioxidant capacity of phenolic compounds and the plasmonic properties of silver nanoparticles

Aijaz A. Bhutto, Şaban Kalay, S. T.H. Sherazi, Mustafa Culha

Research output: Contribution to journalArticlepeer-review

51 Scopus citations

Abstract

Plasmonic response of silver nanoparticles (AgNPs) reduced with phenolic compounds were evaluated and correlated with the antioxidant capacities of corresponding phenolic compounds and their relative chemical structures. The reference methods including DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)) radical scavenging assays were used for the measurement of antioxidant capacity of phenolic compounds which was positively correlated with redox characteristics of these compounds against the formation of AgNPs. It is found that the higher plasmonic response of AgNPs corresponds to the highest antioxidant capacity of phenolic acids, which in turn depends on chemical structures and degree of hydroxylation. The higher degree of hydroxylation in chemical structures of phenolic compounds demonstrated the higher radical scavenging capacity and higher tendency to reduce Ag+ to AgNPs. The influence of reaction time and temperature on reducing efficiency of the tested phenolic compounds is found to be different. Some phenolic compounds such as quercetin, rutin and gallic acid reacted fast (< 1.0 min) while others were found slow reacting. This study establishes the relationship between the antioxidant capacity of phenolic acids and corresponding optical response by means of plamonics, which can be used as an innovative antioxidant detection assay for samples rich in phenolic compounds.

Original languageEnglish (US)
Pages (from-to)174-181
Number of pages8
JournalTalanta
Volume189
DOIs
StatePublished - Nov 1 2018
Externally publishedYes

Keywords

  • Antioxidant activity
  • Phenolic acids
  • Silver nanoparticles
  • Structure-activity relationship

ASJC Scopus subject areas

  • Analytical Chemistry

Fingerprint

Dive into the research topics of 'Quantitative structure–activity relationship between antioxidant capacity of phenolic compounds and the plasmonic properties of silver nanoparticles'. Together they form a unique fingerprint.

Cite this