Abstract
Gene therapy provides a promising strategy for curing monogenetic disorders and complex diseases. However, there are challenges associated with the use of viral delivery vectors. The advent of nanomedicine represents a quantum leap in the application of gene therapy. Recent advances in stimulus-responsive nonviral nanocarriers indicate that they are efficient delivery systems for loading and unloading of therapeutic nucleic acids. Some nanocarriers are responsive to cues derived from the internal environment, such as changes in pH, redox potential, enzyme activity, reactive oxygen species, adenosine triphosphate, and hypoxia. Others are responsive to external stimulations, including temperature gradients, light irradiation, ultrasonic energy, and magnetic field. Multiple stimuli-responsive strategies have also been investigated recently for experimental gene therapy.
Original language | English (US) |
---|---|
Article number | 2100540 |
Journal | Advanced Science |
Volume | 8 |
Issue number | 14 |
DOIs | |
State | Published - Jul 21 2021 |
Keywords
- gene therapy
- nonviral vector
- stimulus-responsive nanocarriers
- viral vector
ASJC Scopus subject areas
- Medicine (miscellaneous)
- General Chemical Engineering
- General Materials Science
- Biochemistry, Genetics and Molecular Biology (miscellaneous)
- General Engineering
- General Physics and Astronomy