Abstract
An important aspect of synapse development is the clustering of neurotransmitter receptors in the postsynaptic membrane. Although MuSK is required for acetylcholine receptor (AChR) clustering at the neuromuscular junction (NMJ), the underlying molecular mechanisms remain unclear. We report here that in muscle cells, MuSK interacts with Dishevelled (Dvl), a signaling molecule important for planar cell polarity. Disruption of the MuSK-Dvl interaction inhibits Agrin- and neuron-induced AChR clustering. Expression of dominant-negative Dvl1 in postsynaptic muscle cells reduces the amplitude of spontaneous synaptic currents at the NMJ. Moreover, Dvl1 interacts with downstream kinase PAK1. Agrin activates PAK, and this activation requires Dvl. Inhibition of PAK1 activity attenuates AChR clustering. These results demonstrate important roles of Dvl and PAK in Agrin/MuSK-induced AChR clustering and reveal a novel function of Dvl in synapse development.
Original language | English (US) |
---|---|
Pages (from-to) | 489-505 |
Number of pages | 17 |
Journal | Neuron |
Volume | 35 |
Issue number | 3 |
DOIs | |
State | Published - Aug 1 2002 |
Externally published | Yes |
ASJC Scopus subject areas
- Neuroscience(all)