TY - JOUR
T1 - Renal 20-HETE inhibition attenuates changes in renal hemodynamics induced by L-NAME treatment in pregnant rats
AU - Huang, Hui
AU - Zhou, Yiqiang
AU - Raju, Venugopal T.
AU - Du, Juan
AU - Chang, Hsin Hsin
AU - Wang, Cong Yi
AU - Brands, Michael W
AU - Falck, John R.
AU - Wang, Mong-Heng
PY - 2005/11
Y1 - 2005/11
N2 - We previously reported that inhibition of nitric oxide (NO) synthesis by N-nitro-L-arginine methyl ester (L-NAME) during late pregnancy leads to increased production of renal vascular 20-hydroxyeicosatetraenoic acid (20-HETE), a cytochrome P-450 (CYP) 4A-derived vasoconstrictor, in pregnant rats. However, the effect of upregulation of vascular 20-HETE production on renal function after NO inhibition is not known. To test the hypothesis that increased gestational vascular 20-HETE synthesis after NO inhibition is involved in mediating blood pressure and renal functional changes, we first determined the IC50 value of the effect of nitroprusside (SNP), a NO donor, on renal 20-HETE production in cortical microsomes. We then divided pregnant rats and age-matched virgin rats into a vehicle control group, an L-NAME treatment group (0.25 mg/ml in drinking water), and a group treated with L-NAME plus N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS; CYP4A-selective inhibitor, 10 mg·kg-1·day-1 iv). After 4 days of treatment, we measured blood pressure, renal blood flow (RBF), renal vascular resistance (RVR), and glomerular filtration rate (GFR) in each group. The addition of SNP (IC50 = 22 μM) decreased renal cortical 20-HETE production. In pregnant rats, L-NAME treatment led to significantly higher mean arterial pressure (MAP) and RVR, and lower RBF and GFR. Combined treatment with DDMS and L-NAME significantly attenuated the increases in MAP and RVR and the decrease in GFR, but not the reduction in RBF induced by L-NAME treatment. L-NAME and L-NAME plus DDMS had no significant impact on renal hemodynamics in virgin rats. In addition, chronic treatment with DDMS selectively inhibited cortical 20-HETE production without a significant effect on CYP4A expression in L-NAME-treated pregnant rats. In conclusion, NO effectively inhibits renal cortical microsomal 20-HETE production in female rats. In pregnant rats, the augmentation of renal 20-HETE production after NO inhibition is associated with increased MAP and RVR, whereas decreased GFR is negated by treatment of a selective and competitive CYP4A inhibitor. These results demonstrate that the interaction between renal 20-HETE and NO is important in the regulation of renal function and blood pressure in pregnant rats.
AB - We previously reported that inhibition of nitric oxide (NO) synthesis by N-nitro-L-arginine methyl ester (L-NAME) during late pregnancy leads to increased production of renal vascular 20-hydroxyeicosatetraenoic acid (20-HETE), a cytochrome P-450 (CYP) 4A-derived vasoconstrictor, in pregnant rats. However, the effect of upregulation of vascular 20-HETE production on renal function after NO inhibition is not known. To test the hypothesis that increased gestational vascular 20-HETE synthesis after NO inhibition is involved in mediating blood pressure and renal functional changes, we first determined the IC50 value of the effect of nitroprusside (SNP), a NO donor, on renal 20-HETE production in cortical microsomes. We then divided pregnant rats and age-matched virgin rats into a vehicle control group, an L-NAME treatment group (0.25 mg/ml in drinking water), and a group treated with L-NAME plus N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS; CYP4A-selective inhibitor, 10 mg·kg-1·day-1 iv). After 4 days of treatment, we measured blood pressure, renal blood flow (RBF), renal vascular resistance (RVR), and glomerular filtration rate (GFR) in each group. The addition of SNP (IC50 = 22 μM) decreased renal cortical 20-HETE production. In pregnant rats, L-NAME treatment led to significantly higher mean arterial pressure (MAP) and RVR, and lower RBF and GFR. Combined treatment with DDMS and L-NAME significantly attenuated the increases in MAP and RVR and the decrease in GFR, but not the reduction in RBF induced by L-NAME treatment. L-NAME and L-NAME plus DDMS had no significant impact on renal hemodynamics in virgin rats. In addition, chronic treatment with DDMS selectively inhibited cortical 20-HETE production without a significant effect on CYP4A expression in L-NAME-treated pregnant rats. In conclusion, NO effectively inhibits renal cortical microsomal 20-HETE production in female rats. In pregnant rats, the augmentation of renal 20-HETE production after NO inhibition is associated with increased MAP and RVR, whereas decreased GFR is negated by treatment of a selective and competitive CYP4A inhibitor. These results demonstrate that the interaction between renal 20-HETE and NO is important in the regulation of renal function and blood pressure in pregnant rats.
KW - Arachidonic acid
KW - Cytochrome P-450
KW - Eicosanoid
KW - Hypertension
KW - Kidney
KW - Nitric oxide
KW - Pregnancy
UR - http://www.scopus.com/inward/record.url?scp=26844475422&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=26844475422&partnerID=8YFLogxK
U2 - 10.1152/ajprenal.00149.2005
DO - 10.1152/ajprenal.00149.2005
M3 - Article
C2 - 15998843
AN - SCOPUS:26844475422
SN - 0363-6135
VL - 289
SP - F1116-F1122
JO - American Journal of Physiology - Heart and Circulatory Physiology
JF - American Journal of Physiology - Heart and Circulatory Physiology
IS - 5 58-5
ER -