Abstract
The chemokine stromal-derived factor-1 (SDF-1, also known as CXCL12) and its receptor CXCR4 have been implicated in homing of stem cells to the bone marrow and the homing of bone marrow-derived cells to sites of injury. Bone marrow cells infiltrate brain and give rise to long-term resident cells following injury. Therefore, SDF-1 and CXCR4 expression patterns in 40 mice were examined relative to the homing of bone marrow-derived cells to sites of ischemic injury using a stroke model. Mice received bone marrow transplants from green fluorescent protein (GFP) transgenic donors and later underwent a temporary middle cerebral artery suture occlusion (MCAo). SDF-1 was associated with blood vessels and cellular profiles by 24 hours through at least 30 days post-MCAo. SDF-1 expression was principally localized to the ischemic penumbra. The majority of SDF-1 expression was associated with reactive astrocytes; much of this was perivascular. GFP+ cells were associated with SDF-1-positive vessels and were also found in the neuropil of regions with increased SDF-1 immunoreactivity. Most vessel-associated GFP+ cells resemble pericytes or perivascular microglia and the majority of the GFP+ cells in the parenchyma displayed characteristics of activated microglial cells. These findings suggest SDF-1 is important in the homing of bone marrow-derived cells, especially monocytes, to areas of ischemic injury.
Original language | English (US) |
---|---|
Pages (from-to) | 84-96 |
Number of pages | 13 |
Journal | Journal of Neuropathology and Experimental Neurology |
Volume | 63 |
Issue number | 1 |
DOIs | |
State | Published - Jan 2004 |
Keywords
- Astrocytes
- Chemokine
- Chemotactic
- Ischemia
- Microglia
- Stem cells
- Stromal-derived factor-1
ASJC Scopus subject areas
- Medicine(all)