Abstract
Objective: Secondary caries and micro-cracks are the main limiting factors for dentin bond durability. The objectives of this study were to develop a self-healing adhesive containing dimethylaminohexadecyl methacrylate (DMAHDM) and nanoparticles of amorphous calcium phosphate (NACP), and investigate the effects of water-aging for 12 months on self-healing, dentin bonding, and antibacterial properties for the first time. Methods: Microcapsules were synthesized with poly (urea-formaldehyde) (PUF) shells containing triethylene glycol dimethacrylate (TEGDMA) and N,N-dihydroxyethyl-p-toluidine (DHEPT). The adhesive contained 7.5% microcapsules, 10% DMAHDM, and 20% NACP (all mass). Specimens were water-aged at 37 °C for 1 day to 12 months. Dentin bond strength was measured using extracted human teeth. A single-edge-V-notched-beam (SEVNB) method was used to measure fracture toughness KIC and self-healing efficiency. A dental plaque microcosm biofilm model was used with human saliva as inoculum. Results: The microcapsules + DMAHDM + NACP group showed no decline in dentin bond strength after water-aging for 12 months, which was significantly higher than that of other groups without DMAHDM (p < 0.05). A self-healing efficiency of 67% recovery in KIC was obtained even after 12 months of water immersion, indicating that the self-healing ability was not lost in water-aging (p > 0.1). The bacteria-killing ability of this adhesive did not decline from 1 day to 12 months (p > 0.1), with biofilm CFU reduction by 3–4 orders of magnitude after the resin was water-aged for 12 months, compared to control resin. Significance: This novel adhesive with triple merits of self-healing, antibacterial and remineralization functions showed an excellent long-term durability in water-aging for 12 months. This multifunctional adhesive has the potential for dental applications to heal cracks, inhibit bacteria, provide ions for remineralization, and increase the restoration longevity.
Original language | English (US) |
---|---|
Pages (from-to) | 1104-1116 |
Number of pages | 13 |
Journal | Dental Materials |
Volume | 35 |
Issue number | 8 |
DOIs | |
State | Published - Aug 2019 |
Keywords
- Antimicrobial
- Dental adhesive
- Microcapsules
- Remineralization
- Self-healing
- Water-aging
ASJC Scopus subject areas
- Materials Science(all)
- Dentistry(all)
- Mechanics of Materials