Synergistic Effect of Endogenous and Exogenous Aldehydes on Doxorubicin Toxicity in Yeast

Jana S. Miles, Samantha J. Sojourner, Aurellia M. Whitmore, Devon Freeny, Selina Darling-Reed, Hernan Flores-Rozas

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Anthracyclines are frequently used to treat many cancers including triple negative breast cancer, which is commonly observed in African-American women (AA), and tend to be more aggressive, carry worse prognoses, and are harder to manage because they lack molecular targets. Although effective, anthracyclines use can be limited by serious side effects and eventually the development of drug resistance. In S. cerevisiae, mutants of HOM6 display hypersensitivity to doxorubicin. HOM6 is required for synthesis of threonine and interruption of the pathway leads to accumulation of the threonine intermediate L-aspartate-semialdehyde. This intermediate may synergize with doxorubicin to kill the cell. In fact, deleting HOM3 in the first step, preventing the pathway to reach the HOM6 step, rescues the sensitivity of the hom6 strain to doxorubicin. Using several S. cerevisiae strains (wild type, hom6, hom3, hom3hom6, ydj1, siz1, and msh2), we determined their sensitivity to aldehydes and to their combination with doxorubicin, cisplatin, and etoposide. Combination of formaldehyde and doxorubicin was most effective at reducing cell survival by 31-fold-39-fold (in wild type cells) relative to doxorubicin and formaldehyde alone. This effect was dose dependent on doxorubicin. Cotreatment with formaldehyde and doxorubicin also showed increased toxicity in anthracycline-resistant strains siz1 and msh2. The hom6 mutant also showed sensitivity to menadione with a 2.5-fold reduction in cell survival. The potential use of a combination of aldehydes and cytotoxic drugs could potentially lead to applications intended to enhance anthracycline-based therapy.

Original languageEnglish (US)
Article number4938189
JournalBioMed Research International
Volume2018
DOIs
StatePublished - 2018
Externally publishedYes

ASJC Scopus subject areas

  • General Biochemistry, Genetics and Molecular Biology
  • General Immunology and Microbiology

Fingerprint

Dive into the research topics of 'Synergistic Effect of Endogenous and Exogenous Aldehydes on Doxorubicin Toxicity in Yeast'. Together they form a unique fingerprint.

Cite this