Targeting vascular inflammation in ischemic stroke: Recent developments on novel immunomodulatory approaches

Shashank Shekhar, Mark W. Cunningham, Mallikarjuna R. Pabbidi, Shaoxun Wang, George W. Booz, Fan Fan

Research output: Contribution to journalArticlepeer-review

93 Scopus citations


Ischemic stroke is a devastating and debilitating medical condition with limited therapeutic options. However, accumulating evidence indicates a central role of inflammation in all aspects of stroke including its initiation, the progression of injury, and recovery or wound healing. A central target of inflammation is disruption of the blood brain barrier or neurovascular unit. Here we discuss recent developments in identifying potential molecular targets and immunomodulatory approaches to preserve or protect barrier function and limit infarct damage and functional impairment. These include blocking harmful inflammatory signaling in endothelial cells, microglia/macrophages, or Th17/γδ T cells with biologics, third generation epoxyeicosatrienoic acid (EET) analogs with extended half-life, and miRNA antagomirs. Complementary beneficial pathways may be enhanced by miRNA mimetics or hyperbaric oxygenation. These immunomodulatory approaches could be used to greatly expand the therapeutic window for thrombolytic treatment with tissue plasminogen activator (t-PA). Moreover, nanoparticle technology allows for the selective targeting of endothelial cells for delivery of DNA/RNA oligonucleotides and neuroprotective drugs. In addition, although likely detrimental to the progression of ischemic stroke by inducing inflammation, oxidative stress, and neuronal cell death, 20-HETE may also reduce susceptibility of onset of ischemic stroke by maintaining autoregulation of cerebral blood flow. Although the interaction between inflammation and stroke is multifaceted, a better understanding of the mechanisms behind the pro-inflammatory state at all stages will hopefully help in developing novel immunomodulatory approaches to improve mortality and functional outcome of those inflicted with ischemic stroke.

Original languageEnglish (US)
Pages (from-to)531-544
Number of pages14
JournalEuropean Journal of Pharmacology
StatePublished - Aug 15 2018
Externally publishedYes


  • Biologics
  • Blood brain barrier
  • IL-17
  • Immune system
  • Nanomedicine
  • Tissue plasminogen activator

ASJC Scopus subject areas

  • Pharmacology


Dive into the research topics of 'Targeting vascular inflammation in ischemic stroke: Recent developments on novel immunomodulatory approaches'. Together they form a unique fingerprint.

Cite this