TY - JOUR
T1 - The chemokine receptor CXCR7 interacts with EGFR to promote breast cancer cell proliferation
AU - Salazar, Nicole
AU - Muñoz, Daniel
AU - Kallifatidis, Georgios
AU - Singh, Rajendra K.
AU - Jordà, Mercè
AU - Lokeshwar, Balakrishna L
N1 - Funding Information:
This work was supported in parts by United States’ Public Health Services Grants: NIH R01CA156776 (B.L.L.) and VA-BLR&D Merit Review Grant No. 5I01-BX001517-02 (B.L.L.). 1F31CA171787-01A1 (N.S.) and a Training Grant 1R25GM076419 (PI. M. Gaines) to N.S.
Publisher Copyright:
© 2014 Salazar et al.; licensee BioMed Central Ltd.
PY - 2014/8/28
Y1 - 2014/8/28
N2 - Background: Recent advances have revealed a significant contribution of chemokines and their receptors in tumor growth, survival after chemotherapy, and organ-specific metastasis. The CXC chemokine receptor-7 (CXCR7) is the latest chemokine receptor implicated in cancer. Although over expressed in breast cancer cell lines and tumor tissues, its mechanism of action in breast cancer (BrCa) growth and metastasis is unclear. Studies in other cancers have implicated CXCR7 in cell proliferation, anti-apoptotic activity and cell-cell adhesion. The present study was initiated to examine the pattern of CXCR7 expression and its role in regulation of growth signaling in breast cancer. Methods: The contribution of CXCR7 in BrCa cell proliferation was investigated in representative cell lines using real time quantitative PCR (q-PCR), proliferation assays, immunohistochemistry and immunoblotting. Phenotypic changes were examined after CXCR7 specific cDNA and siRNA transfection and expression levels were monitored by q-PCR. Further, the association of CXCR7 with epidermal growth factor receptor (EGFR) and modulation of its activity were investigated by western blotting, immunofluorescence, and in-situ proximity ligation assays in human BrCa cells and tissues. Results: CXCR7 was expressed in both, estrogen receptor (ER) positive and negative BrCa cell lines. CXCR7 was also expressed unevenly in normal breast tissues and to a much higher extent in ER + cancer tissues. Depletion of CXCR7 in MCF7 BrCa cells by RNA interference decreased proliferation and caused cell cycle arrest. Further, proximity ligation assay (PLA) revealed colocalization of CXCR7 with EGFR in cancer tissues and cancer cell lines. CXCR7 depletion reduced levels of phospho-EGFR at Tyrosine1110 after EGF-stimulation and also reduced phosphorylation of ERK1/2, indicating a potentially direct impact on mitogenic signaling in MCF7 cells. Using siRNA to knockdown β-arrestin2 in cells with EGFR over expression we were able to nearly deplete the CXCR7-EGFR colocalization events, suggesting that β-arrestin2 acts as a scaffold to enhance CXCR7 dependent activation of EGFR after EGF stimulation. Conclusions: These results demonstrate coupling of CXCR7 with EGFR to regulate proliferation of BrCa cells and suggest an important ligand-independent role of CXCR7 in BrCa growth. Thus, the CXCR7-EGFR axis is a promising target for breast cancer therapy.
AB - Background: Recent advances have revealed a significant contribution of chemokines and their receptors in tumor growth, survival after chemotherapy, and organ-specific metastasis. The CXC chemokine receptor-7 (CXCR7) is the latest chemokine receptor implicated in cancer. Although over expressed in breast cancer cell lines and tumor tissues, its mechanism of action in breast cancer (BrCa) growth and metastasis is unclear. Studies in other cancers have implicated CXCR7 in cell proliferation, anti-apoptotic activity and cell-cell adhesion. The present study was initiated to examine the pattern of CXCR7 expression and its role in regulation of growth signaling in breast cancer. Methods: The contribution of CXCR7 in BrCa cell proliferation was investigated in representative cell lines using real time quantitative PCR (q-PCR), proliferation assays, immunohistochemistry and immunoblotting. Phenotypic changes were examined after CXCR7 specific cDNA and siRNA transfection and expression levels were monitored by q-PCR. Further, the association of CXCR7 with epidermal growth factor receptor (EGFR) and modulation of its activity were investigated by western blotting, immunofluorescence, and in-situ proximity ligation assays in human BrCa cells and tissues. Results: CXCR7 was expressed in both, estrogen receptor (ER) positive and negative BrCa cell lines. CXCR7 was also expressed unevenly in normal breast tissues and to a much higher extent in ER + cancer tissues. Depletion of CXCR7 in MCF7 BrCa cells by RNA interference decreased proliferation and caused cell cycle arrest. Further, proximity ligation assay (PLA) revealed colocalization of CXCR7 with EGFR in cancer tissues and cancer cell lines. CXCR7 depletion reduced levels of phospho-EGFR at Tyrosine1110 after EGF-stimulation and also reduced phosphorylation of ERK1/2, indicating a potentially direct impact on mitogenic signaling in MCF7 cells. Using siRNA to knockdown β-arrestin2 in cells with EGFR over expression we were able to nearly deplete the CXCR7-EGFR colocalization events, suggesting that β-arrestin2 acts as a scaffold to enhance CXCR7 dependent activation of EGFR after EGF stimulation. Conclusions: These results demonstrate coupling of CXCR7 with EGFR to regulate proliferation of BrCa cells and suggest an important ligand-independent role of CXCR7 in BrCa growth. Thus, the CXCR7-EGFR axis is a promising target for breast cancer therapy.
KW - Breast cancer cell proliferation
KW - CXCR7
KW - Chemokine receptor
KW - EGFR
KW - Heterodimerization
KW - β-arrestin2
UR - http://www.scopus.com/inward/record.url?scp=84907046942&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84907046942&partnerID=8YFLogxK
U2 - 10.1186/1476-4598-13-198
DO - 10.1186/1476-4598-13-198
M3 - Article
C2 - 25168820
AN - SCOPUS:84907046942
SN - 1476-4598
VL - 13
JO - Molecular Cancer
JF - Molecular Cancer
IS - 1
M1 - 198
ER -