The transcriptional diversity of 25 Drosophila cell lines

Lucy Cherbas, Aarron Willingham, Dayu Zhang, Li Yang, Yi Zou, Brian D. Eads, Joseph W. Carlson, Jane M. Landolin, Philipp Kapranov, Jacqueline Dumais, Anastasia Samsonova, Jeong-Hyeon Choi, Johnny Roberts, Carrie A. Davis, Haixu Tang, Marijke J. Van Baren, Srinka Ghosh, Alexander Dobin, Kim Bell, Wei LinLaura Langton, Michael O. Duff, Aaron E. Tenney, Chris Zaleski, Michael R. Brent, Roger A. Hoskins, Thomas C. Kaufman, Justen Andrews, Brenton R. Graveley, Norbert Perrimon, Susan E. Celniker, Thomas R. Gingeras, Peter Cherbas

Research output: Contribution to journalArticlepeer-review

190 Scopus citations

Abstract

Drosophila melanogaster cell lines are important resources for cell biologists. Here, we catalog the expression of exons, genes, and unannotated transcriptional signals for 25 lines. Unannotated transcription is substantial (typically 19% of euchromatic signal). Conservatively, we identify 1405 novel transcribed regions; 684 of these appear to be new exons of neighboring, often distant, genes. Sixty-four percent of genes are expressed detectably in at least one line, but only 21% are detected in all lines. Each cell line expresses, on average, 5885 genes, including a common set of 3109. Expression levels vary over several orders of magnitude. Major signaling pathways are well represented: most differentiation pathways are "off" and survival/growth pathways "on." Roughly 50% of the genes expressed by each line are not part of the common set, and these show considerable individuality. Thirty-one percent are expressed at a higher level in at least one cell line than in any single developmental stage, suggesting that each line is enriched for genes characteristic of small sets of cells. Most remarkable is that imaginal disc-derived lines can generally be assigned, on the basis of expression, to small territories within developing discs. These mappings reveal unexpected stability of even fine-grained spatial determination. No two cell lines show identical transcription factor expression. We conclude that each line has retained features of an individual founder cell superimposed on a common "cell line" gene expression pattern.

Original languageEnglish (US)
Pages (from-to)301-314
Number of pages14
JournalGenome Research
Volume21
Issue number2
DOIs
StatePublished - Feb 2011

ASJC Scopus subject areas

  • Genetics
  • Genetics(clinical)

Fingerprint

Dive into the research topics of 'The transcriptional diversity of 25 Drosophila cell lines'. Together they form a unique fingerprint.

Cite this