Thermal phase transition in nuclear multifragmentation: The role of Coulomb energy and finite size

B. K. Srivastava, S. Albergo, F. Bieser, F. P. Brady, Z. Caccia, D. A. Cebra, A. D. Chacon, J. L. Chance, Y. Choi, S. Costa, J. B. Elliott, M. L. Gilkes, J. A. Hauger, A. S. Hirsch, E. L. Hjort, A. Insolia, M. Justice, D. Keane, J. C. Kintner, V. LindenstruthM. A. Lisa, H. S. Matis, M. McMahan, C. McParland, W. F J Müller, D. L. Olson, M. D. Partlan, N. T. Porile, R. Potenza, G. Rai, J. Rasmussen, H. G. Ritter, J. Romanski, J. L. Romero, G. V. Russo, H. Sann, R. P. Scharenberg, A. Scott, Y. Shao, T. J M Symons, M. Tincknell, C. Tuvé, S. Wang, P. Warren, H. H. Wieman, T. Wienold, K. Wolf

    Research output: Contribution to journalArticlepeer-review

    13 Scopus citations

    Abstract

    A systematic analysis of the moments of the fragment size distribution has been carried out for the multifragmentation of [Formula Presented] Au, La, and Kr on carbon. The breakup of Au and La is consistent with a continuous thermal phase transition. The data indicate that the excitation energy per nucleon and isotopic temperature at the critical point decrease with increasing system size. This trend is attributed primarily to the increasing Coulomb energy with finite size effects playing a smaller role.

    Original languageEnglish (US)
    Article number041605
    Pages (from-to)416051-416054
    Number of pages4
    JournalPhysical Review C - Nuclear Physics
    Volume64
    Issue number4
    DOIs
    StatePublished - Sep 19 2001

    ASJC Scopus subject areas

    • General Physics and Astronomy
    • Nuclear and High Energy Physics

    Fingerprint

    Dive into the research topics of 'Thermal phase transition in nuclear multifragmentation: The role of Coulomb energy and finite size'. Together they form a unique fingerprint.

    Cite this