Trans -Cinnamaldehyde Inhibits Microglial Activation and Improves Neuronal Survival against Neuroinflammation in BV2 Microglial Cells with Lipopolysaccharide Stimulation

Yan Fu, Pin Yang, Yang Zhao, Liqing Zhang, Zhangang Zhang, Xianwen Dong, Zhongping Wu, Ying Xu, Yongjun Chen

Research output: Contribution to journalArticlepeer-review

30 Scopus citations

Abstract

Background. Microglial activation contributes to neuroinflammation and neuronal damage in neurodegenerative disorders including Alzheimer's and Parkinson's diseases. It has been suggested that neurodegenerative disorders may be improved if neuroinflammation can be controlled. trans-cinnamaldehyde (TCA) isolated from the stem bark of Cinnamomum cassia possesses potent anti-inflammatory capability; we thus tested whether TCA presents neuroprotective effects on improving neuronal survival by inhibiting neuroinflammatory responses in BV2 microglial cells. Results. To determine the molecular mechanism behind TCA-mediated neuroprotective effects, we assessed the effects of TCA on lipopolysaccharide- (LPS-) induced proinflammatory responses in BV2 microglial cells. While LPS potently induced the production and expression upregulation of proinflammatory mediators, including NO, iNOS, COX-2, IL-1β, and TNF-α, TCA pretreatment significantly inhibited LPS-induced production of NO and expression of iNOS, COX-2, and IL-1β and recovered the morphological changes in BV2 cells. TCA markedly attenuated microglial activation and neuroinflammation by blocking nuclear factor kappa B (NF-B) signaling pathway. With the aid of microglia and neuron coculture system, we showed that TCA greatly reduced LPS-elicited neuronal death and exerted neuroprotective effects. Conclusions. Our results suggest that TCA, a natural product, has the potential of being used as a therapeutic agent against neuroinflammation for ameliorating neurodegenerative disorders.

Original languageEnglish (US)
Article number4730878
JournalEvidence-based Complementary and Alternative Medicine
Volume2017
DOIs
StatePublished - 2017

ASJC Scopus subject areas

  • Complementary and alternative medicine

Fingerprint

Dive into the research topics of 'Trans -Cinnamaldehyde Inhibits Microglial Activation and Improves Neuronal Survival against Neuroinflammation in BV2 Microglial Cells with Lipopolysaccharide Stimulation'. Together they form a unique fingerprint.

Cite this