Understanding the coronary circulation through studies at the microvascular level

M. L. Marcus, W. M. Chilian, H. Kanatsuka, Kevin C Dellsperger, C. L. Eastham, K. G. Lamping

Research output: Contribution to journalArticlepeer-review

222 Scopus citations


Studies of the coronary circulation have divided vascular resistances into three large components: large vessels, small resistance vessels, and veins. Studies of the epicardial microcirculation in the beating heart using stroboscopic illumination have suggested that resistance is more precisely controlled in different segments of the circulation. Measurements of coronary pressure in different sized arteries and arterioles have indicated that under normal conditions, 45-50% of total coronary vascular resistance resides in vessels larger than 100 μm. This distribution of vascular resistance can be altered in a nonuniform manner by a variety of physiological (autoregulation, increases in myocardial oxygen consumption, sympathetic stimulation) and pharmacological stimuli (norepinephrine, papaverine, dipyridamole, serotonin, vasopressin, nitroglycerin, adenosine, and endothelin). Studies of exchange of macromolecules in the microcirculation using fluorescent-labeled dextrans have also identified the size of the small pore (35-50 Å) in coronary microvessels that can be altered by myocardial ischemia. Studies of the coronary microcirculation have demonstrated that the control of vascular resistance is extremely complex, and mechanisms responsible for these heterogeneous responses need further examination.

Original languageEnglish (US)
Pages (from-to)1-7
Number of pages7
Issue number1
StatePublished - 1990

ASJC Scopus subject areas

  • Cardiology and Cardiovascular Medicine
  • Physiology (medical)


Dive into the research topics of 'Understanding the coronary circulation through studies at the microvascular level'. Together they form a unique fingerprint.

Cite this